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ESTIMATION OF pmkC PROCESS 

CAPABILITY INDEX BASED ON 

BOOTSTRAP METHOD FOR WEIBULL 

DISTRIBUTION: A CASE STUDY  

 
Abstract: The capability indices are widely used by quality 

professionals as an estimate of process capability. Many 

process indices have been proposed in last few years. A 

process capability index 
pmkC is a generalized version of the 

existing indices confidence interval estimate for 
pkC is defined. 

A series of 
pC , 

pkC , 
pmC . In this paper the Percentile-t 

bootstrap (PTB) simulations using Weibull distribution with 

different parameters and sample size for the index 
pmkC  was 

undertaken to compare the performance and reliability of 

bootstrap method and the effect of parameters of Weibull 

distribution (shape and scale). 

Keywords: Process capability index, Bootstrap sampling, 

pmkC  process index, Percentile-t bootstrap method, Weibull 

distribution 

 

1. Introduction1
 

 

Many techniques are available for quality 

improvement. Statistical Process Control 

(SPC) is one such TQM technique which is 

widely accepted for analyzing quality 

problems and improving the performance of 

the production process. Mahesh and 

Prabhuswamy (2010) have illustrated the 

step by step procedure adopted at a soap 

manufacturing company to improve the 

Quality by reducing process variability using 

Statistical Process Control. 

Process capability indices are used to 

determine whether production process is 

capable of producing items within a 

specified tolerance. To evaluate the degree 
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of process capability of system, it is 

necessary to define a quantitative measure 

that explains the performance of the system.  

A new approach based on noncentral Chi-

Square distributions is presented to design 

the capability control charts (Sagbas, 2013). 

Process capability analysis were defined as 

the technique applied in many stages of the 

product cycle-including process, product 

design, manufacturing and manufacturing 

planning, since it help to determine the 

ability to manufacture parts within the 

tolerance limits and engineering values 

(Sagbas, 2009).  

Several process capability indices have been 

proposed to numerically measure whether a 

process is capable of manufacturing products 

that meet customer requirements or 

specifications (Sappakitkamjorn and 

Niwitpong, 2006). Even though there are 

many process capability indices, the two 
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most commonly used indices are 
pC and 

pkC  (Zhang, 2010). 

The process indices 
pC and 

pkC  have 

become popular as unitless measures that 

relate the natural process tolerance (6 ) , 

upper and lower  

6
p

USL LSL
C




 .                               (1) 

USL and LSL denote that the upper and 

lower specification limits, respectively, for 

the value of characteristic X to be measured 

and σ is the process standard deviation. 

However 
pkC  is more extensively used in 

practice than 
pC because the former 

considers the degree of process mean, µ, 

shifted from the center of the specification 

and the standard deviation, σ, 

simultaneously. If the process is normally 

distributed, 
pkC can be defined as follow 

(Montgomery, 2011): 

min( , )

3
pk

USL LSL
C

 



 
 .                (2) 

Since 
pkC takes on its maximum value when 

the process is centered between the 

specification limits, there is natural tendency 

to adjust the process until  is located 

precisely at the midpoint; this however, may 

not the best location. As result, Hsiang 

(1985) proposed another index called 
pmC  

independently, therefore, the process 

capability index 
pmC  is called the Taguchi’s 

index or the process capability index based 

on the loss criterion. The concept of the 

Taguchi’s quality loss has been applied for 

various quality improvement decisions. 

(Festervand et al., 2001). 

1

2 2 23( ( ) )

pm

d
C

T 



 

,                         (3) 

where 
1

( )
2

d USL LSL  and T is target 

value. 

Pearn and Shu (2003) have applied the 

pmC control chart to the practical production 

environment of precision electronic devices. 

As a result, they have verified the 

effectiveness of the 
pmC control chart and 

concluded that the approach is useful for 

quality improvement decisions. 

A new index 
pmkC  is proposed by Pearn et al 

(1992), 
pmkC  is generalized of 

pmC and 
pkC . 

1

2 2 2

min( , )

3( ( ) )

pmk

USL LSL
C

T

 

 

 


 

.              (4) 

In actual practice the value of   and  are 

not known and X and S (the sample mean 

and  sample standard deviation 

respectively) are used as estimators for   

and  . This then gives  

1

2 2 2

min( , )ˆ

3( ( ) )

pmk

USL X X LSL
C

S X T

 


 

.           (5) 

This expression, (5), can be rewritten as 

1

2 2 2

1

ˆ ,
1

3( ( ) ( ) )

pmk n

i

i

d X M
C

X X X T
n 

 


  

(6) 

where 
2

USL LSL
M


 . 

 

2. The Bootstrap Method  
 

The bootstrap is a computer-based and 

resampling method for assigning measures 

of accuracy to statistical estimates. 

Let X1, X2, …, Xn be a sample of X taken 

from a process, i.e., sequence of n i.i.d. 

random variables 
1 2( , ,..., )nX X X F . A 

bootstrap sample is one of size n drawn 

(with replacement) from the original sample 

and is denoted by, * * *

1 2, ,..., nX X X F  

(Tosasukul et al., 2009).  

There are a total of nn  such resamples 

possible. In our case, these resamples would 

then be used to calculate nn values (each) of 
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*Ĉ . (C denoted PCI). Each of these would 

be an estimate of Ĉ and the entire collection 

would constitute the complete bootstrap 

distribution for Ĉ . 

Bootstrap sampling is equivalent to sampling 

with replacement form the empirical 

probability distribution. Thus, the bootstrap 

distribution of Ĉ  is an estimate of the 

distribution of C. In practice, a rough 

minimum of 1000 bootstrap resamples are 

usually sufficient to compute reasonably 

accurate confidence interval estimates (Efron 

and Tibshirani, 1986). Therefore, it is 

assumed that B=1000 times bootstrap 

samples are taken and B=1000 times 

bootstrap Ĉ are calculated and ordered from 

smallest to largest. 

In the following we present three possible 

constructions for the confidence interval of 

pmkC  using bootstrap techniques. 

 

2.1. Standard Bootstrap (SB) Confidence 

Interval       

      

From the B=1000 bootstrap estimates *ˆ
iC , 

for i = 1, 2, …, B, calculate the sample 

average 
*C  and the sample standard 

deviation * * * 21 ˆ( )
1

c iS C C
B

 

 . The 

standard bootstrap confidence interval for C 

is  

* *ˆ ˆ,  c cC Z S C Z S 
  
 

.                           (7) 

  

2.2. Percentile Bootstrap (PB) Confidence 

Interval 

 

From the ordered collection of *ˆ
iC , for 

i=1,2,…,n, the percentile bootstrap 

confidence interval for C is  

* *ˆ ˆ( ), ((1 ) ) .C C   
 

                           (8) 

 

2.3. Percentile-t Bootstrap (PTB) 

Confidence Interval 

 

There are three cases of confidence intervals 

for 
pmkC  (Choi et al., 1995). For the case of 

M>µ, confidence interval for 
pmkC is  

1 1

2 2
1 1

, ,
2 2

ˆ ˆ ˆ ˆˆ ˆ,  pmk pmk pmk pmk
pmk pmk

C m C m     

 
  

 
                                                                    (9)                                                                                                                                                                           

where  

2 2 2 31
ˆ [ ( ) ]

9
pmk S T X      

2 2 2[ ( ) ( )( )]S T X T X d X M      
2 2

3
ˆ( ) [ ( ) ( )d X M S T X T X      

( )]d X M   .                                       (10)                                                                                                    

and 
,

ˆ
pmk   is defined as follows: 

 (11)       
*

,*

ˆ ˆ( )
ˆ( )

ˆ

pmk pmk

pmk

pmk

m C C
P  




                                                   

*ˆ
pmkC and *ˆ

pmk are the resample version of 

ˆ
pmkC and ˆ

pmk respectively. 

For the case M < µ, the 2ˆ
pmk is different, 

2 2 2 31
ˆ [ ( ) ]

9
pmk S T X   

2 2 2[ ( ) ( )( )]S T X T X d X M           

2 2

3
ˆ( ) [ ( ) ]d X M S T X    

21
( )( )] ( )

4
T X d X M d X M      

4

4
ˆ( ))S  .                                             (12)                                                   

For the case of M=µ,
pmkC  is reduced to 

pmC and      

thus we have the same confidence interval as 

for  
pmC , which is given as 

1 1

2 2
1 1

, ,
2 2

ˆ ˆ ˆ ˆˆ ˆ,  pm pm pm pm
pm pm

C m C m     

 
  

 

                                                                                                                                                               

         (13) 

where  
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2

1

ˆ ,
1

3 ( )

pm
n

i

i

d
C

X X
n 





 

2

2 2 3
ˆ

3 ( ( ) )
pm

USL LSL

S T X







 
 

2 2 4

3 4

1
ˆ ˆ( ( ) ( ) ( ))

4
S T X T X S       . 

and 
,

ˆ
pm   is defined as follows: 

*

,*

ˆ ˆ( )
ˆ( )

ˆ

pm pm

pm

pm

m C C
P  




              (14) 

To study the different confidence intervals, 

their estimated coverage probabilities and 

average widths are considered. For each of 

the methods considered, a (1 )100%  

confidence interval denoted by  ,  UL  is 

obtained (based on 10000N   replicates). 

The estimated coverage probability and the 

average width are given by 

(Panichkitkosolkul, 2013): 

#( )
Coverage Probability ,

pkL C U

N

 
  

and           

1

( )

 Average Width .

N

i i

i

U L

N








 

Panichkitkosolkul and Saothayanun (2012) 

concerned the construction of bootstrap 

confidence intervals for the process 

capability index in the case of half-logistic 

distribution. 

 

3. Weibull Distribution 
 

Waloddi Weibull (1887-1979) was a 

Swedish engineer and scientist well-known 

for his work on strength of materials and 

fatigue analysis. The pdf of Weibull 

distribution, also known as the Extreme 

Value Type III distribution, is given as 

follows: 

( )
1

, (0, )( ) ( )
bx

b b a
a bf x ba x e I x


 

 .            (15)         

The Weibull distribution is defined for x>0, 

and both distribution parameters (a-scale, b-

shape) are positive.  

Even though the Weibull distribution was 

originally developed to address the problems 

arising in material sciences, it is widely used 

in many other areas thanks to its flexibility. 

When b=1, this distribution reduces to the 

Exponential model, and when b=2, it mimics 

the Rayleigh distribution which is mainly 

used in telecommunications. In addition, it 

resembles the Normal distribution when 

b=3.5. 

If X WEIBULL(a,b) then the mean and 

variance of X are given as follows 

1

, ( ) [ (1 )],a bE X a b     

2 1 2 1

, ( ) [ (1 2 ) (1 )],a bVar X a b b       

 

4. Simulation Study 
 

Here we want to compare the new 

Percentile–t bootstrap confidence interval 

with Standard and Percentile confidence 

interval and the effect of the Weibull’s 

parameters in performance of bootstrap 

method. For this purpose, we choose the 

following values given in Franklin and 

Wasserman (1992): USL=61, LSL=40, T=49, 

 =50,  =2. This values yield 

pmkC =1.491, which represent a capable 

process. 

We chose the resample size m = 10, 20, 30 

(for the n=10), m = 30, 40, 50 (for the n=30) 

and m = 40, 50, 60 (for the n = 40). B = 1000 

bootstrap resamples (each of size m) drawn 

from each sample of size n and a 90% 

bootstrap confidence interval is constructed 

for each method. It is then determined if the 

calculated confidence interval for each type 

contains the true index value. The mean and 

standard error of the length of each 

confidence interval is also evaluated. This 

single simulation was then replicated 

N=1000 times and, thus, a proportion of 

times that the true value of the index is 

contained within the calculated interval was 
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calculated as well as an average length, and a 

standard error of average length of the 90% 

confidence intervals. In order to make each 

distribution to have the specified values of, 

 =50 and  =2, we transform Weibull 

distribution as follows: 

X WEIBULL(a,b)       

( ), ( ) ( ) ,mean X S Sd X X

S

 
   

  

For example : 

             

X WEIBULL(1,1)

1, 1 1
2( ) 50,

1

S X  
   

X WEIBULL(2,3)
 

1.786, 0.6491 1.786
2( ) 50,

0.6491

S X  
   

 

5. Simulation results 
 

The simulation results are tabulated in 

Tables 1-6. For a Weibull distribution 

process with parameters (a,b) when b is less 

than 3 (Tables 1,2,3), standard  method 

provide higher coverage probability for all  

size and shorter standard error for n≥30. But 

the confidence interval of the Percentile-t 

method is shorter for all size and provides 

shorter standard error for 3n  . In general 

case, Percentile method has the lower 

coverage probability. The mean of the 

Percentile-t method is less than two other 

methods for all size.  

 

Table 1. Coverage Probability, Mean, Standard Error of the Width for the 90% Bootstrap 

Confidence Interval –Weibull (1,2) 

pmkC  

  

n=10 

  

n=30 

  

n=40 

 wbl(1,2) m 10 20 30 30 40 50 40 50 60 

 
Cov 0.817 0.638 0.531 0.859 0.804 0.767 0.887 0.847 0.798 

PTB Mean 1.0601 0.7003 0.5414 0.64 0.5453 0.4837 0.5528 0.4887 0.4423 

 

S.E. 0.3914 0.2562 0.1612 0.2187 0.181 0.1556 0.147 0.1263 0.1133 

 
Cov 0.874 0.699 0.593 0.871 0.818 0.783 0.891 0.847 0.8 

SB Mean 1.3215 0.8049 0.6234 0.6771 0.5727 0.504 0.5744 0.5064 0.4567 

 

S.E. 0.604 0.3217 0.2295 0.179 0.1513 0.1309 0.1286 0.113 0.1015 

 
Cov 0.781 0.623 0.525 0.819 0.762 0.724 0.842 0.801 0.764 

PB Mean 1.2127 0.7822 0.6014 0.6629 0.5635 0.4978 0.5661 0.4998 0.4521 

 

S.E. 0.519 0.3131 0.2046 0.171 0.1474 0.1297 0.1264 0.1106 0.0995 

 

Table 2. Coverage Probability, Mean, Standard Error of the Width for the 90% Bootstrap 

Confidence Interval –Weibull (3,2) 

pmkC  

  

n=10 

  

n=30 

  

n=40 

 wbl(3,2) m 10 20 30 30 40 50 40 50 60 

 
Cov 0.799 0.623 0.514 0.855 0.791 0.736 0.889 0.852 0.812 

PTB Mean 1.0675 0.7104 0.545 0.6438 0.5499 0.4879 0.5435 0.4828 0.4374 

 

S.E. 0.3951 0.286 0.1784 0.2062 0.1729 0.1509 0.1289 0.118 0.1004 

 
Cov 0.876 0.679 0.563 0.871 0.804 0.755 0.897 0.857 0.814 

SB Mean 1.3492 0.8147 0.6298 0.6856 0.5796 0.5106 0.569 0.5029 0.4538 

 

S.E. 0.6457 0.3433 0.2442 0.1851 0.1573 0.135 0.1168 0.102 0.0923 
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Cov 0.766 0.61 0.494 0.797 0.757 0.701 0.853 0.794 0.754 

PB Mean 1.2346 0.7914 0.6068 0.671 0.5699 0.5039 0.5605 0.4971 0.4488 

 

S.E. 0.5647 0.334 0.218 0.1775 0.1519 0.1339 0.1147 0.1002 0.091 

 

Table 3. Coverage Probability, Mean, Standard Error of the Width for the 90% Bootstrap 

Interval –Weibull (4,1) 

pmkC  

  

n=10 

  

n=30 

  

n=40 

 wbl(4,1) m 10 20 30 30 40 50 40 50 60 

 
Cov 0.709 0.562 0.435 0.813 0.757 0.709 0.852 0.821 0.778 

PTB Mean 1.601 1.114 0.7725 1.188 0.9931 0.8697 1.0451 0.9139 0.807 

 

S.E. 0.9699 0.7482 0.4175 0.7593 0.6027 0.5222 0.5803 0.488 0.423 

 
Cov 0.853 0.672 0.552 0.871 0.805 0.75 0.881 0.836 0.786 

SB Mean 2.5766 1.4787 1.0739 1.1999 0.9898 0.8565 1.0093 0.8738 0.7776 

 

S.E. 1.2568 0.7454 0.4941 0.4315 0.3601 0.3081 0.3232 0.2813 0.2469 

 
Cov 0.643 0.514 0.433 0.746 0.691 0.647 0.786 0.753 0.722 

PB Mean 2.3046 1.4173 0.9474 1.1406 0.9531 0.8318 0.9686 0.8461 0.7582 

 

S.E. 1.1146 0.7464 0.3873 0.392 0.3381 2963 0.3023 0.2657 0.2388 

 

For b≥3 (Tables 4, 5, 6), Percentile-t method 

provides higher coverage probability when 

n≥30 and shorter confidence interval and 

standard error for all size. For n≤30 standard 

method provide higher coverage probability, 

but the confidence interval and standard 

error is higher than Percentile-t method. 

Percentile method has the lower coverage 

probability. The mean of the Percentile-t 

method is less than two other methods for all 

size. 

 

Table 4. Coverage Probability, Mean, Standard Error of the Width for the 90% Bootstrap 

Confidence Interval –Weibull (1,3) 

pmkC  

  

n=10 

  

n=30 

  

n=40 

 wbl(1,3) m 10 20 30 30 40 50 40 50 60 

 
Cov 0.883 0.706 0.595 0.91 0.843 0.788 0.907 0.863 0.828 

PTB Mean 1.035 0.6559 0.5063 0.5544 0.4708 0.4169 0.4739 0.418 0.378 

 

S.E. 0.3553 0.2188 0.1425 0.1185 0.0999 0.0886 0.0879 0.0782 0.0713 

 
Cov 0.895 0.73 0.626 0.899 0.836 0.782 0.903 0.862 0.821 

SB Mean 1.1471 0.7095 0.5541 0.5679 0.4822 0.4259 0.4806 0.4243 0.3837 

 

S.E. 0.5393 0.2908 0.2051 0.1247 0.1068 0.0939 0.092 0.0815 0.0737 

 
Cov 0.828 0.685 0.583 0.864 0.81 0.771 0.875 0.841 0.802 

PB Mean 1.0624 0.6922 0.5394 0.5583 0.4758 0.4216 0.475 0.4199 0.3801 

 

S.E. 0.4531 0.284 0.1799 0.1237 0.1043 0.0926 0.0902 0.806 0.756 
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Table 5. Coverage Probability, Mean, Standard Error of the Width for the 90% Bootstrap 

Confidence Interval –Weibull (3,3) 

pmkC  

  

n=10 

  

n=30 

  

n=40 

 wbl(3,3) m 10 20 30 30 40 50 40 50 60 

 
Cov 0.861 0.692 0.572 0.904 0.845 0.793 0.912 0.875 0.821 

PTB Mean 1.0294 0.6583 0.5104 0.5621 0.477 0.4214 0.4784 0.4224 0.3822 

 

S.E. 0.3645 0.2294 0.1538 0.1208 0.1021 0.09 0.0977 0.0853 0.0775 

 
Cov 0.88 0.702 0.6 0.909 0.842 0.797 0.906 0.866 0.809 

SB Mean 1.1481 0.713 0.5567 0.5749 0.4869 0.4307 0.4849 0.429 0.3879 

 

S.E. 0.525 0.2798 0.2021 0.1307 0.1103 0.0965 0.0974 0.0859 0.0783 

 
Cov 0.807 0.667 0.546 0.873 0.825 0.779 0.853 0.82 0.778 

PB Mean 1.0585 0.6924 0.5432 0.5645 0.4809 0.4258 0.479 0.4243 0.3842 

 

S.E. 0.4368 0.2671 0.1885 0.126 0.107 0.0945 0.0951 0.0846 0.0773 

 

Table 6. Coverage Probability, Mean, Standard Error of the Width for the 90% Bootstrap 

Confidence Interval –Weibull (4,3) 

pmkC  

  

n=10 

  

n=30 

  

n=40 

 wbl(4,3) m 10 20 30 30 40 50 40 50 60 

 
Cov 0.866 0.675 0.569 0.9 0.842 0.786 0.906 0.855 0.812 

PTB Mean 1.0629 0.6746 0.5193 0.5537 0.47 0.4157 0.4753 0.4189 0.3799 

 

S.E. 0.4213 0.2429 0.1549 0.1196 0.0996 0.0872 0.0938 0.0826 0.074 

 
Cov 0.885 0.701 0.597 0.892 0.832 0.787 0.896 0.849 0.811 

SB Mean 1.2197 0.7394 0.5759 0.5636 0.4788 0.4239 0.4811 0.4246 0.3849 

 

S.E. 0.6246 0.302 0.2173 0.1229 0.1031 0.0916 0.0945 0.0836 0.0758 

 
Cov 0.798 0.652 0.554 0.848 0.792 0.741 0.873 0.815 0.78 

PB Mean 1.1118 0.7169 0.5593 0.5544 0.4733 0.419 0.4747 0.4199 0.3818 

 

S.E. 0.5049 0.2854 0.1972 0.1193 0.1011 0.0895 0.0923 0.0825 0.0749 

 

As the original sample size n increase, the 

coverage probability become closer to 0.9 

and the mean and standard error of interval 

lengths are decreasing for each method. It is 

also observe that when the resample size m 

increasing, the coverage probability and 

mean and standard error decreasing. 

When the parameter a (scale) increase the 

coverage probability, the mean and the 

standard error of the length of the confidence 

interval decrease. When the parameter b 

(shape) increasing, the coverage probability 

increase, but the mean and standard error 

decreasing. 

 

 

6. Conclusion 
 

The bootstrap confidence intervals of the 

process capability index for Weibull 

distribution have been proposed. The 

following were considered: The Standard 

Bootstrap Confidence Interval, Percentile 

Bootstrap Confidence Interval. Here we 

want to compare the new Percentile–t 

bootstrap confidence interval with Standard 

and Percentile confidence interval and the 

effect of the Weibull’s parameters in 

performance of bootstrap method. Based on 

simulation study, The Percentile-t 

confidence interval provides the highest 

coverage and shortest mean and standard 
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error of confidence interval length. 

Although the SB method provide higher 

coverage probability than PTB method in 

some cases, but it’s mean and standard error 

of the length of the confidence interval is 

higher than PTB method. Results show that 

the PB method provide poorest coverage 

probability in general. 

As a result, when the resample size m 

increase, the coverage probability decrease. 

It seems that no significant gain is achieved 

by increasing the resample size. It is better 

that the resample size be taken equal to the 

original sample size. 

The best coverage probability is provided 

when the parameter b≥3, and when the 

parameter a (scale) decrease. In this case 

the coverage probability become closer to 

0.9. 

In conclusion, for Weibull distribution with 

parameters (a,b), Percentile-t bootstrap 

method has higher coverage probability for 

all size and it is better to use b≥3 to access 

the highest coverage probability. Thus, the 

standard bootstrap confidence interval is 

more appropriate than its counterparts in 

this setting. 
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