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REMEDIAL APPROACHES TO DECREASE 

THE EFFECT OF MEASUREMENT ERRORS 

ON SIMPLE LINEAR PROFILE 

MONITORING 

 
Abstract: In most profile monitoring applications, the 

explanatory variables are not fixed from profile to profile. 

However, in most studies, they are assumed to be fixed values. 

Furthermore, the observed units usually contain some source 

of uncertainty referred as “measurement errors.” In this 

paper, first the effect of neglecting the measurement errors 

effect on detection capability of two common control charts for 

Phase II monitoring of simple linear profiles is evaluated. 

Then, three remedial approaches including ranked set 

sampling, multiple measurement and increasing sample size 

are utilized to decrease the mentioned effect. Simulation 

studies in terms of average run length (ARL) metric show that 

neglecting the measurement errors adversely affects the 

capability of both charts. The results also confirm that the 

remedial approaches adequately compensate for the 

mentioned effect.  

Keywords: Measurement errors; Multiple measurement 

approach; Ranked set sampling (RSS); Simple linear profile; 

Statistical process monitoring (SPM). 

 

1. Introduction 
 

In some production systems, the quality of the 

process is characterized by a relationship 

between a response variable and one or more 

independent explanatory variables. 

Monitoring such functional relationships over 

time is referred to as “profile monitoring”. 

Different profile monitoring schemes are 

classified into two general categories 

including Phase I and Phase II. The purpose 

of Phase I monitoring is to provide an analysis 

on the preliminary data for estimating the 

model parameters. The main purpose of 

profile monitoring approaches in Phase II is 

to design a monitoring scheme for detecting 

different out-of-control scenarios in the 

process parameters. The most important 

application of profile monitoring includes 

calibration of measurement instruments to 

ascertain their proper performance over time, 

determine the optimum calibration frequency, 

and avoid over-calibration. Furthermore, 

Kang and Albin (2000) presented a real 

application where the amount of an artificial 

sweetener dissolved per liter of water 

(response variable) is represented by a 

function of temperature (explanatory 

variable). Other applications of profile 

monitoring include agriculture field, optical 

imaging system, semiconductor 

manufacturing industry, automotive industry, 

aluminum electrolytic capacitor 

manufacturing process, turning process, 

vertical density of particleboard (please see 

Maleki et al., 2018).  

The most common model in profile 

monitoring is referred to as “simple linear 
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profile” where the behavior of response 

variable (y) depends linearly on the value of a 

single explanatory variable (x). Monitoring 

simple linear profiles is explored by some 

researchers such as Kang and Albin (2000), 

Kim et al. (2003), Mahmoud and Woodall 

(2004), Saghaei et al. (2009), Noorossana et 

al. (2011), Yeh and Zerehsaz (2013), Abdella 

et al. (2014), Kazemzadeh et al. (2016), 

Khedmati and Niaki (2016). Chiang et al. 

(2017), Kalaei et al. (2018), Mahmood et al. 

(2018) and Hassanvand et al. (2019). 

Different profile monitoring approaches are 

generally classified into two major 

categories: (1) Control charts with fixed 

explanatory variable(s), and (2) Control 

charts under random explanatory variable(s). 

In most researches in the literature such as 

Zhang et al. (2009), Noorossana et al. (2010), 

Amiri et al. (2013), Farahani et al. (2014), the 

x values are considered as fixed values from 

profile to profile. However, in real world 

applications, the explanatory variables 

usually are random quantities. To the best of 

our knowledge, only few researches such as 

Noorossana et al. (2015) and Abbas et al. 

(2019) have taken into account the 

randomness of explanatory variables. 

In statistical process monitoring applications, 

the samples are taken from the process and 

plotted for analyzing the process stability and 

variability. However, because of some 

inevitable sources of uncertainty, the 

measured quantities are not completely in 

accordance with their actual values. This 

difference between the measured and the 

actual quantities of products is called as 

“measurement errors”. The effect of 

measurement errors on the performance of 

different univariate and multivariate control 

charts is investigated by several researchers. 

Examples include Abbasi (2010), Yang et al. 

(2013), Chakraborty and Khurshid (2013), 

Hu et al. (2015), Noorossana and Zerehsaz 

(2015), Hu et al. (2016), Maleki et al. (2016a), 

Maleki et al. (2016b), Amiri et al. (2018), 

Salmasnia et al. (2018), Tang et al. (2018), 

Tran et al. (2019) and Zaidi et al. (2019) and 

Haq et al. (2020). Readers are referred to the 

review paper by Maleki et al. (2017) for 

detailed information. 

As noted, in some real statistical process 

monitoring applications, the process outcome 

is characterized by profile data instead of 

univariate or multivariate quality 

characteristics. A preliminary assumption to 

construct a control chart to monitor a profile 

model is that the observed data are accurate 

and are free from gauge measurement errors. 

However, exact data is a rare phenomenon in 

any manufacturing or non-manufacturing 

environment where human involvement is 

evident. As far as we know, investigating the 

effect of measurement errors on the 

performance of profile monitoring schemes is 

clearly neglected in the literature. Due to the 

importance of the issue as well as to fill the 

mentioned research gap, incorporating a 

linear covariate error model in constructing 

two control charts for monitoring simple 

linear profiles is taken into consideration in 

this paper. Hence, the first goal of this paper 

is to study the effect of ignoring the 

measurement errors on the performance of 

EWMA-3 and Hotelling T2 charts for 

monitoring simple linear profiles in the case 

of random explanatory variable. We provide 

simulations studies to show how neglecting 

the measurement errors adversely affect the 

performance of both charts. As the second 

goal, we also suggest three remedial 

approaches for reducing the measurement 

errors effect on Phase II monitoring of simple 

linear profiles. The rest of this paper is 

structured as follows: In section 2, the 

problem definitions and assumptions are 

presented. In Section 3, the effect of 

neglecting measurement errors in 

constructing EWMA-3 and Hotelling T2 

charts under random explanatory variable is 

discussed.  In Section 4, we present 

simulation studies for evaluating the effect of 

ignoring measurement errors on the 

performance of both charts to detect different 

step shifts in the parameters of simple linear 

regression model. In Section 5, three remedial 

approaches including ranked set sampling 

(RSS), multiple measurement approach as 
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well as increasing sample size are suggested 

for reducing the effect of measurement errors. 

In Section 6, the performance of the remedial 

approaches is investigated via simulation 

studies. Finally, Section 7 is devoted to 

conclusion remarks and recommendation for 

future study. 

 

2. Problem definition 
 

As noted, the difference between the 

measured and the actual quantities caused by 

the measuring equipment and/or operators is 

called as measurement errors. In this paper, 

we focus on Phase II monitoring of simple 

linear profiles in the case of random 

explanatory variable which is contaminated 

by measurement gauge errors. First, the 

statistical properties of T2 and EWMA-3 

charts in terms of ARL criterion are 

investigated when the measurement error is 

ignored. Then, to lessen the undesired effect 

of measurement errors, three remedial 

approaches are proposed. Figure 1 depicts the 

proposed approach: 

 

Constructing simple linear 

profile monitoring schemes 

with random x’s

Constructing simple linear 

profile monitoring schemes 

with random x’s

T
2
 and EWMA-3 

statistics with random x

T
2
 and EWMA-3 

statistics with random x

Regression model and 

process parameters

Regression model and 

process parameters

Investigating the charts of 

step I in the presence of 

measurement error

Investigating the charts of 

step I in the presence of 

measurement error

Extended T
2
 and 

EWMA-3 statistics

Extended T
2
 and 

EWMA-3 statistics

Covariate model 

parameters

Covariate model 

parameters

Utilizing the remedial 

approaches in for decreasing 

the error effect

Utilizing the remedial 

approaches in for decreasing 

the error effect

Extended T
2
 and 

EWMA-3 statistics

Extended T
2
 and 

EWMA-3 statistics

The parameters of 

remedial approaches

The parameters of 

remedial approaches

 
Figure 1. The proposed method 

 

The notations and definitions used to 

formulate the problem are presented in Table 

1. According to the mentioned explanations, 

when the process is in-control, the 

relationship between the response variable of 

interest and the random explanatory variable 

is: 

0 1 ,  1,..., ,  1,2,...ij ij ijy x i n j        (1) 

where the error term 
ij  and explanatory 

variable 
ijx  are two independent and 

normally distributed variables with the 

following parameters: 

2 2

0~ (0, ),  ~ ( , ).ij ij x xN x N     (2) 

The regression parameters in profile 

; 1,2,...j j   can be estimated via ordinary 

least square (OLS) method according to the 

following equation: 

( )

1 0 1

( )

ˆ ˆ ˆ,  
xy j

j j j j j

xx j

S
y x

S
      

(3) 

where 

2

( ) ( )

1

1

( ) ,

( )( )

n

xx j ij j xy j

i

n

ij j ij j

i

S x x S

x x y y





 

  




 (4) 

Here the additive error model is: 

.ij ij ijw Ax B u    (5) 

Typically when 1A  and 0B  , we have: 

.ij ij ijw x u   (6) 

It can be concluded that embedding Equation 

(6) in Equation (1) leads to the following 

regression model: 

0 1

0 1 1

( )

; 1,2..., 1,...,

ij ij ij ij

ij ij ij

y w u

w u i j n

  

   

    

    
 (7) 

Obviously, in the presence of measurement 

errors, the actual values of explanatory 

variable are not accessible. Therefore, the 

estimated values of the regression parameters 
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considering the measurement errors are 

obtained via the observed explanatory 

variable as follows: 

( )

1 0 1

( )

ˆ ˆ ˆ,  
wy j

j j j j j

ww j

S
y w

S
      (8) 

 

 

where 

2
( ) ( )

1

1

( ) ,

( )( )

n

ww j ij j wy j

i

n

ij j ij j

i

S w w S

w w y y





  

 




 (9) 

Table 1. The notations and definitions 

Notation Description 

j  Set of profiles 

i  Set of observations 

ijx  Observation i in profile j 

x
  The mean of explanatory variable 

2

x
  The variance of explanatory variable 

ij  Error term for observation i in profile j  

ije  The residual value for observation i  in profile j  

je  The average of residuals in profile j  

2

0
  In-control variance of error term 

2  Out-of-control variance of error term 

iju  measurement error term for observation i in profile j 

2

u
  The variance of measurement error term 

ijw  The measured quantity of ij
x  

0  In-control intercept parameter  

1  In-control slope parameter 

0   Out-of-control intercept parameter  

1   Out-of-control slope parameter 

0 j  The estimated intercept parameter in profile j  

1 j  The estimated slope parameter in profile j  

[.]E  The expected value of the quantity in the brackets 

[.]Var  The variance of the quantity in the brackets 

Σ  The variance-covariance matrix 

  Smoothing parameter of EWMA control chart 

n  Sample size in each profile 

kLCL  Lower control limit of control chart k  

kUCL  Upper control limit of control chart k  

kL  Control limit coefficient of control chart k  
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3. Neglecting measurement errors 
 

In this section, two common approaches 

namely EWMA-3 and Hotelling T2 charts in 

monitoring simple linear profile under 

random explanatory variable and gauge 

measurement errors are discussed. 

 

3.1. EWMA-3 approach 

 

One of the most common approaches for 

monitoring simple linear profiles is EWMA-

3 control chart which is first proposed by Kim 

et al. (2003) in the case of fixed explanatory 

variable. In EWMA-3 chart, to have 

independent regression parameters, the x-

values are transformed so that the average of 

the transformed explanatory variable in each 

profile becomes zero (Equation 10).  

*
ij ij jx x x   (10) 

After applying this transformation, the 

regression model in Equation (1) will be: 

*
0 1  1,2,..., ,  1,2,...ij ij ijy x i n j        (11) 

where 

1 1 0 0 1,  .x         (12) 

When the random explanatory variable is 

affected by the measurement errors, it is not 

possible to directly observe x-values. Hence, 

instead of actual value of explanatory 

variable, the transformation is performed with 

respect to measured quantities as follows: 

*

ij ij jw w w   (13) 

After transforming the w-values, we can 

apply three separate charts for monitoring 

regression parameters including intercept, 

slope, and standard deviation under 

measurement errors. The corresponding 

statistics and control limit for each chart are 

discussed as follows. The EWMAI statistic 

(for monitoring intercept parameter) is not 

affected by the measurement errors 

(Noorossana and Zerehsaz, 2015). It can be 

statistically checked that when the 

explanatory variable has random nature, the 

variance of response variable (EWMAI statistic) 

changes from 
2
0  to 2 2 2

0 1 x    (

2

0

2 n




 to 

2 2 2

0 1

2

x

n

  






). The chart statistic 

corresponding to jth profile: 1,2,...j  for 

monitoring the intercept parameter will be as: 

0( ) (1 ) ( 1),I j IEWMA j EWMA j    

 
(14) 

where ;0 1    is smoothing parameter 

and 0 0 1(0)I xEWMA       . The upper 

and lower control limits are given by 

Equations (15) and (16), respectively: 

2 2 2
0 1

0 1

2 2 2
0 1

0

2

2

x
I x I

x
I

UCL L
n

L
n

  
  



  





  




 



 (15) 

0
2 2 2

1

0 1

2 2 2
0 1

0

2

2

x

I x I

x
I

LCL L
n

L
n

  
  



  





  




 



 (16) 

Next, we concentrate on constructing a proper 

statistic and corresponding control limits for 

monitoring slope parameter. According to the 

literature, the control limits for slope 

parameter, when the values of explanatory 

variable are error-free and fixed from profile 

to profile are given as: 

2

0
1

2

0
1

2

2

S S

xx

S

xx

UCL L
S

L
S











 


 


 (17) 

2

0
1

2

0
1

2

2

S S

xx

S

xx

LCL L
S

L
S











 


 


 (18) 
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The control limits in Equations (17) and (18) 

depend on the value of xxS  which is in turn 

is a function of explanatory variable. 

Consequently, when the explanatory variable 

has random nature and is affected by the 

measurement errors, two problems will be 

arisen. The first is that the actual values for 

explanatory variable are not available and the 

second is regarding to the control limits 

which will vary from profile to profile. In this 

case, to have constant control limits, the slope 

statistic is standardized as follows: 

1

1 1 1 1

2 2

0 0

( )
j j

ww ww

Z j

S S



   

 

 
   

(19) 

The modified EWMA-based slope statistic is 

obtained as Equation (20): 

1
( ) ( ) (1 ) ( 1),S SEWMA j Z j EWMA j    

 
(20) 

where (0) 0SEWMA  . Now, the modified 

slope statistic is analyzed with the following 

constant control limits: 

2
S SUCL L







 (21) 

2
S SLCL L




 


 (22) 

In the last step of EWMA-3 procedure, the 

chart statistic for monitoring the error 

variance is derived as: 

2
0

( ) max{ ln( )

(1 ) ( 1),ln( )};  1,2,...

E j

E

EWMA j MSE

EWMA j j



 

 

  
 (23) 

where 
2
0(0) ln( )EEWMA   and 

.
2

j

j

SSE
MSE

n



 Note that the value of jSSE  in 

jth profile is calculated by the measured 

quantities as 

2 *
0 1

1

ˆ ˆ( ) ; ( )

n

j ij j ij ij j j ij

j

SSE e e e y w 



     . 

Since the chart statistic is a positive value, the 

lower control limit is considered equal to 

zero. Meanwhile, the upper control limit is 

obtained based on the following equation: 

2

0ln( ) var[ln( )]
2

E EUCL L MSE





 


 (24) 

where [ln( )]Var MSE  is obtained via the 

following formula (Crowder & Hamilton, 

1992): 

2

3 5

2 2
[ln( )]

2 ( 2)

4 16

3( 2) 15( 2)

Var MSE
n n

n n

  
 


 

 (25) 

After deriving the control statistics for each 

parameter, the designed control scheme 

signals when at least one of the mentioned 

statistics falls outside the corresponding 

control limit interval. The control limits of 

each control chart are set such that (1) The 

same in-control average run length (ARL0) 

value for each method is obtained, (2) The 

overall ARL0 equals to a desired value. 

 

3.2. Hotelling T2  

 

Kang and Albin (2000) proposed Hotelling T2 

chart based on the fact that the estimated 

parameters obtained by least square method 

are normally distributed. The modified 

control scheme considering the random 

explanatory variable under contaminated data 

by measurement errors is discussed in this 

subsection. Recall that under measurement 

errors, the x-values are not accessible and 

instead of the actual values of explanatory 

variable, the contaminated observations are 

employed to drive the chart statistic. Despite 

of EWMA-3 approach, Hotelling T2 control 

chart uses a single statistic for monitoring 

model parameters as follows: 

2 1( ) ( ),T

j j jT   u u Σ u u  (26) 

where 

( )

( )

0 1 0[ , ]
j

j

wy T

j j j j j j

ww

S
y w

S
     u  (27) 
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0 1[ , ]T u  (28) 

0 0 1

0 1 1

22
2 0

2 0

2 2 2

0 0

1
( )

   

  

ww ww

ww ww

ww

n S S

w

S S

  

  




 

   

 
   

   
  

   
  

Σ

 

(29) 

The chart triggers an out-of-control signal 

when 2

j TT UCL  where TUCL  is set such 

that 0ARL  becomes a pre-determined value. 

 

4. Simulation studies 

 

In this section the effect of ignoring 

measurement errors on the performance of 

EWMA-3 and Hotelling T2 charts is 

investigated through simulation studies where 

the relationship between y and x is expressed 

by a simple linear model as: 

3 2 ,ij ij ijy x     (30) 

where 
5

~ (5, )
3

x N , ~ (0,1)N , 4n   and 

0.2  . We suppose that x is affected by the 

measurement errors according to Equation 

(6). As mentioned, we use ARL values to 

assess both EWMA-3 and Hotelling T2 

control charts in all simulation experiments. 

ARL criterion is defined as the expected 

number of samples taken from the process 

until the first sample falls outside the control 

limits interval. In all simulations, the control 

limits coefficients of EWMA-3 chart and the 

UCL value of Hotelling T2 chart, TUCL , are 

set such that we have 0 200ARL   for both 

methods. To do that, ,I SL L  and EL  are 

chosen separately such that for each of 

EWMA-3 charts, the ARL0 becomes 

approximately equal to 599. This leads to 

obtain the overall 0 200ARL  . The control 

limits coefficients corresponding to each 

control chart for EWMA-3 are reported in the 

first rows of each Table. The effect of 

ignoring measurement errors on the 

performance of EWMA-3 chart to detect 

shifts in 0 , 1  and   under different values 

of 
2

u  are given in Tables 2-4, respectively. 

The results of Tables 2-4 show that ignoring 

the measurement errors can adversely affect 

the ability of EWMA-3 control chart in 

detecting all regression model parameters. It 

is represented that the ARLs increase as the 

value of 
2

u  increases.

 

Table 2. ARLs of EWMA-3 control chart for different values of 𝜎𝑢
2 under shifts in 𝛽0 

IL   3.0156 3.0276 3.0289 3.0294 

SL   3.0109 3.0869 3.3521 3.8881 

EL   1.3723 1.4374 1.6094 1.8575 

2

0

u

 
 No Error 0.01 0.04 0.09 

3 199.6620 200.3130 199.9450 201.7490 

3.2 151.7380 155.7440 165.0300 168.1360 

3.4 91.4240 96.4000 98.8860 100.8840 

3.6 51.0290 53.7810 55.8960 56.3800 

3.8 29.8120 30.7770 32.1410 32.4030 

4 19.2230 19.8770 20.3880 21.0420 

4.2 13.7840 14.5110 14.6610 14.9760 

4.4 10.3120 10.8540 10.9880 11.2330 

4.6 8.2520 8.4090 8.6880 8.7770 

4.8 6.9030 6.9470 7.1670 7.2650 

5 5.8020 6.0280 6.1150 6.1620 



 

1026                                           S. Khalafi, A. Salmasnia, M. R. Maleki 

Table 3. ARLs of EWMA-3 control chart for different values of 𝜎𝑢
2 under shifts in 𝛽1 

IL   3.0156 3.0276 3.0289 3.0294 

SL   3.0109 3.0869 3.3521 3.8881 

EL   1.3723 1.4374 1.6094 1.8575 

2

1

u

 
 No Error 0.01 0.04 0.09 

2 199.6620 200.3130 199.9450 201.7490 

2.025 163.1000 188.5590 190.7970 194.2240 

2.050 119.5190 128.3730 145.4930 149.5680 

2.075 78.8010 88.0480 95.3280 102.4580 

2.100 51.2480 58.7590 64.6000 65.2050 

2.125 34.7670 38.6940 43.8960 44.4290 

2.150 25.9270 26.5180 31.8310 32.2570 

2.175 19.2660 20.9920 23.8190 24.6760 

2.200 15.6860 17.3510 18.0290 18.5820 

2.225 12.9160 13.0930 14.5630 15.4390 

2.250 10.7300 11.1300 12.0700 12.4890 

 

Table 4. ARLs of EWMA-3 control chart for different values of 𝜎𝑢
2 under shifts in 𝜎 

IL   3.0156 3.0276 3.0289 3.0294 

SL   3.0109 3.0869 3.3521 3.8881 

EL   1.3723 1.4374 1.6094 1.8575 

2

u


 No Error 0.01 0.04 0.09 

1 199.6620 200.3130 199.9450 201.7490 

1.2 37.0520 41.1810 49.9270 56.3350 

1.4 14.0850 15.0720 18.9240 21.6090 

1.6 7.7170 8.2060 10.1920 12.1700 

1.8 5.5040 5.9030 7.0490 8.5390 

2 4.2910 4.4200 5.4390 6.3870 

2.2 3.5250 3.7400 4.3960 5.0290 

2.4 3.0250 3.322 3.7860 4.3620 

2.6 2.7410 2.8640 3.3540 3.7460 

2.8 2.4270 2.6160 2.9760 3.4480 

3 2.2010 2.4030 2.7410 3.1750 

Tables 5-7 contains ARLs of Hotelling T2 

control chart in detecting model parameters 

under covariate model presented in Equation 

(6) and different values of 
2

u . Similar to 

EWMA-3 control chart, The ARLs reported in 

Tables 5-7 confirm that the ability of 

Hotelling T2 control chart in detecting all 

regression model parameters is affected by 

the measurement errors. The results also 

reveal that as 
2

u  increases, the ARLs tend to 

increase. By comparing the results of Tables 

2-4 with those given in Tables 5-7, we can see 

that in the presence of measurement errors 

which are ignored, the Hotelling T2 control 

chart performs better than EWMA-3 chart. 
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Table 5. ARLs of Hotelling T2 control chart for different values of 𝜎𝑢
2 under shifts in 𝛽0 

TUCL  10.5966 11.0966 12.2966 14.6166 

2

0

u

 
 No Error 0.01 0.04 0.09 

3 200.2980 199.0770 199.8970 199.1050 

3.2 138.6150 143.2200 148.8170 150.8100 

3.4 63.3120 67.0110 71.6190 83.9860 

3.6 27.4160 28.9130 33.8550 38.5910 

3.8 12.6390 13.6130 17.4020 19.2940 

4 6.7820 7.4510 8.6000 11.1720 

4.2 3.8730 4.3050 4.9670 6.5910 

4.4 2.5630 2.7650 3.2840 4.0320 

4.6 1.8660 1.9520 2.3170 2.7500 

4.8 1.4260 1.5200 1.7740 2.0140 

5 1.2040 1.2450 1.4230 1.5840 

 

Table 6. ARLs of Hotelling T2 control chart for different values of 𝜎𝑢
2 under shifts in 𝛽1 

TUCL  10.5966 11.0966 12.2966 14.6166 

2

1

u

 
 No Error 0.01 0.04 0.09 

2 200.2980 199.0770 199.8970 199.1050 

2.025 167.2550 173.1380 173.2770 183.8580 

2.050 106.4040 112.7970 124.4000 130.0830 

2.075 64.7410 68.6230 77.7720 87.7420 

2.100 37.5110 39.9930 49.4520 53.7320 

2.125 22.1240 25.1840 29.7610 35.8630 

2.150 13.9380 14.8820 19.2350 23.3280 

2.175 9.2940 10.0300 11.6400 15.5490 

2.200 6.0780 6.4000 8.1150 10.5910 

2.225 4.1940 4.5750 5.9970 7.2420 

2.250 3.2950 3.4380 4.1920 5.1450 

 

Table 7. ARLs of Hotelling T2 control chart for different values of 𝜎𝑢
2 under shifts in 𝜎 

TUCL  10.5966 11.0966 12.2966 14.6166 

2

u


 No Error 0.01 0.04 0.09 

1 200.2980 199.0770 199.8970 199.1050 

1.2 40.1760 40.2870 47.2910 54.3630 

1.4 14.5130 15.6660 18.8220 22.3790 

1.6 7.9980 8.2380 9.7950 11.6030 

1.8 4.9050 5.4210 6.1650 7.3340 

2 3.7960 3.8980 4.5820 5.4540 

2.2 3.0370 3.2600 3.6470 3.9170 

2.4 2.5540 2.6250 2.7960 3.3570 

2.6 2.1620 2.2130 2.5060 2.6950 

2.8 1.9670 2.0580 2.2380 2.4240 

3 1.8110 1.8560 1.9520 2.3130 
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5. Remedial approaches 
 

In the previous sections, we proved the 

undesired effect of ignoring the measurement 

errors on monitoring simple linear profiles. 

To consider such errors, the statistics and the 

corresponding control limits should be 

modified as follows (see also Fuller, 1987). 

As measurement errors have no effect on the 

EWMAI chart, no modification is required. 

However, The EWMAS and EWMAE 

statistics and their corresponding control 

limits should be modified. In this regard, the 

standardized slope statistic is given as: 

1

1 1 1 1

2 2
1 1

( )
j j

y wy y wy

ww ww

Z j

S S



   

     

 
  

 

        (31) 

where 

2

2 2

x

x u




 



 is the reliability ratio, 

2 2 2 2

0 1y x      and . 2

1wy x    Then: 

1
( ) ( ) (1 ) ( 1)S SEWMA j Z j EWMA j          (32) 

where (0) 0SEWMA   and the control limits 

are computed via Equations (21) and (22). 

Next, The EWMAE statistic in the presence of 

measurement errors is given by: 

2 2
0 1( ) max{ [ ( )]

(1 ) ( 1),0}; =1,2,...      

E j u

E

EWMA j MSE

EWMA j j

   



   

 
(33) 

where (0) 0EEWMA  .Then: 

2 2 2

0 12( )

2 2

u
E EUCL L

n

   






 
      (34) 

The T2 statistic for jth profile in the presence 

of measurement errors is similar to Equation 

(26), where: 

0 1 1[ (1 ), ]T

x      u                (35) 

and 

0 0 1

0 1 1

2

2

2 22 2
1 120 1

2 2
1 1

   

  

( ) ( )( )

( ) ( )

y wy y wyu

ww ww
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w w
n S S

w
S S

  

  

 

 

       

     

 
  
 
 
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  

 
 

  
 
 

Σ

     (36) 

Now to reduce the adverse effect of 

measurement errors, three remedial 

approaches are developed in the following 

sub-sections. 

 

5.1. Ranked set sampling spproach 

 

In this subsection, first the RSS method is 

briefly explained. Then, utilizing this strategy 

for the sake of reducing the effect of 

measurement error is given. Let X follows a 

given distribution with mean x  and variance 

2

x  whose probability density function and 

cumulative distribution function are denoted 

by ( )f x  and ( )F x , respectively. Suppose 

that vector 1 2( , ,..., )T

nx x xX  denote a 

simple random sample of size n taken from 

( )f x  while 
(1: ) (2: ) ( : )( , ,..., )T

n n n nx x x X  is the 

ordered statistics of the corresponding 

sample. The mean and variance of ith;

1, 2,...,i n  ordered statistic can be obtained 

by Equations (41) and (42): 

( : ) ( : ) ( )x i m i mxf x dx    (37) 

2 2
( : ) ( : ) ( : )( ) ( )x i m x i m i mx f x dx    (38) 

where ( : ) ( )i mf x  is the probability density 

function of 
( : )i m

x  which is obtained by 

Equation (39): 

   

( : )

1

!
( )

( 1)!( )!

( ) 1 ( ) ( ),  - <x<

i m

i m i

m
f x

i m i

F x F x f x
 


 

  

 (39) 
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For more information, the readers can also see 

David and Nagaraja (2003). Now the 

utilization of RSS strategy in our research is 

discussed. Let 
1 2 1( , ,..., )T

j j nw w wjW  be a 

simple random sample of size n from the 

measured quantities. In order to incorporate 

the RSS strategy in simple linear profile 

monitoring approaches under conatminated x-

values, the following steps are recommended: 

1- Take n samples (profile) each of size n: 

Suppose that n simple random samples in 

each sampling cycle are ; 1,2,...,j njW .  

2- Sort the measured quantities within each 

profile: After sorting the quantities, the 

sample vector for jth; sample is denoted by 

(1: ) (2: ) ( : )( , ,..., )T

n j n j n n nw w w  jW . 

3- The smallest ranked unit is selected from 

the first profile and the second smallest 

ranked unit is selected from the second set. 

The procedure continues and the largest 

ranked unit is selected from the last set. 

4- This completes one cycle of a ranked set 

sample of size n. 

5- ( )ww jS  and ( )wy jS  in Equation (8), are 

computed based on the ranked set samples 

instead of the simple random samples.  

Note that the transformation in EWMA-3 

must be performed in respect to the ranked set 

sampling of the measure quantities. 
 

5.2. Multiple measurement approach 
 

One of the most common approaches for 

covering the measurement error is taking 

several measurements on each sample point 

which is also applied by Linna and Woodall 

(2001) as well as Costa and Castagliola 

(2011). Taking multiple measurements at 

each observation of the underlying quality 

characteristic generally leads to a smaller 

variance of the error component (Haq et al., 

2015). In this section, taking multiple 

measurement on each observation of a given 

profile is discussed. Let 1 2, ,...,ij ij ijky y y  be k 

measurements which are taken for 

; 1,..., , 1,2,...ijy i n j  . Considering the 

covariate model in Equation (6), the variance 

of the measured quantity will be: 

2 2 2

w x u     (40) 

As the variance of the error term in Equation 

(40) increases the difference between the 

actual and measured quality characteristic 

will increase. It can be statistically checked 

that by taking k measurements on each 

sample, the variance of the measured quality 

characteristic reduces to 

2
2 2 u
w x

k


   . 

Obviously by utilizing this approach, the 

difference between the actual and measured 

quantities decrease and consequently more 

reliable measurements are obtained. 
 

5.3. Incerasing sample size 
 

It is proved in statistical process monitoring 

literature that as the sample size increases, the 

power of a control scheme in detecting 

process faults increases (Montgomery, 2005). 

This issue confirms that increasing the sample 

size results in decreasing of the variance of 

statistic. Consequently, it can be employed as 

third remedial approach to reduce the 

undesirable effect of measurement errors in 

monitoring a simple linear profile. 
 

6. Performance evaluation of 

remedial approaches 
 

The performance of the proposed remedial 

approaches to reduce the measurement errors 

effect is analyzed and compared in this 

section. For this purpose, the example 

presented in section 4 is also used in this 

section. The results of utilizing the remedial 

approach in EWMA-3 and Hotelling T2 

control charts are reported in Tables 8-10 and 

11-13, respectively. The results given in 

Tables 8-10 represent that both RSS and 

multiple measurements approaches 

compensate for the undesirable effects of 

measurement errors on detecting ability of 

EWMA-3 control chart. However, the RSS 

method outperforms the multiple 
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measurement approach under step shifts in 

0  and 1 . We can see that when 5k  , the 

ARLs are close to those obtained under no 

error scenario. It could be observed from 

Tables 8-10 that increasing the sample size 

effectively improves the detecting ability of 

EWMA-3 control chart in detecting all out-

of-control scenarios. 

Tables 11-13 represent the results of utilizing 

remedial approaches in Hotelling T2 control 

chart for monitoring intercept parameter, 

slope parameter and error variance, 

respectively. It can be seen from Tables 11-

13 that in multiple measurement approach, 

using 5k   measurements per observation 

can adequately cover the measurement errors 

effect. Similar to EWMA-3 control chart, 

both RSS and increasing sample size 

approaches can also reduce the ARLs in all 

out-of-control scenarios. However, the 

performance of increasing the sample size in 

improving the detecting ability of Hotelling 

T2 control chart is more considerable. 

 

Table 8. ARLs of  remedial methods in EWMA-3 chart under shifts in 𝛽0 when 𝜎𝑢
2 = 0.04 

IL   3.0290 3.0201 3.0189 3.0172 2.1676 3.0290 3.0290 3.0290 

SL   3.0241 3.0204 3.0114 3.0074 3.0269 3.0241 3.0241 3.0241 

EL   4.5584 4.2984 4.2524 4.2134 4.5494 4.2684 4.1468 4.0826 

0
   k=1 

Multiple measurement 
RSS 

increasing sample size 

k=2 k=3 k=5 n=6 n=8 n=10 

3 199.643 200.816 199.534 199.522 200.253 201.78 199.204 199.741 

3.2 160.797 155.92 153.913 153.824 137.183 149.896 129.361 123.387 

3.4 97.885 96.537 93.781 92.312 61.138 73.684 60.657 46.323 

3.6 54.554 54.054 51.162 51.048 29.063 38.613 27.923 23.545 

3.8 31.866 31.769 31.023 30.691 15.911 20.702 15.744 13.340 

4 20.734 20.394 20.147 19.876 10.589 12.859 10.422 8.643 

4.2 14.564 14.499 14.401 13.824 7.972 9.417 7.809 6.438 

4.4 10.912 10.820 10.538 10.334 6.161 7.597 6.145 5.265 

4.6 8.646 8.626 8.498 8.48 5.102 6.227 5.030 4.337 

4.8 7.125 6.970 6.956 6.925 4.356 5.206 4.381 3.798 

5 5.988 5.945 5.932 5.867 3.785 4.557 3.806 3.228 
 

Table 9. ARLs of remedial methods in EWMA-3 chart under shifts in 𝛽1 when 𝜎𝑢
2 = 0.04 

IL   3.0289 3.0201 3.0189 3.0172 2.1676 3.0290 3.0290 3.0290 

SL   3.0241 3.0204 3.0114 3.0074 3.0269 3.0241 3.0241 3.0241 

EL   4.5584 4.2984 4.2524 4.2134 4.5494 4.2684 4.1468 4.0826 

1
   k=1 

Multiple measurement 
RSS 

increasing sample size 

k=2 k=3 k=5 n=6 n=8 n=10 

2 199.643 200.816 199.534 199.522 200.253 201.78 199.204 199.741 

2.025 174.888 171.951 168.987 162.335 165.086 168.331 151.158 144.815 

2.050 124.286 121.666 119.178 112.461 99.890 99.066 85.288 78.703 

2.075 82.772 81.381 81.345 81.307 58.908 63.828 46.214 41.233 

2.100 55.343 54.097 53.776 53.037 34.670 39.679 31.015 26.025 

2.125 38.435 37.321 36.696 35.970 22.220 26.346 20.492 16.554 

2.150 27.820 27.320 27.193 26.926 16.634 18.927 14.796 12.159 

2.175 22.265 20.303 20.079 19.732 12.236 14.438 11.364 9.383 

2.200 17.147 15.998 15.947 15.547 10.052 11.696 9.240 7.586 

2.225 14.319 13.394 13.243 13.169 8.144 9.813 7.325 6.359 

2.250 11.171 10.946 10.754 10.729 6.824 7.886 6.454 5.674 
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Table 10. ARLs of remedial methods in EWMA-3 chart under shifts in 𝜎 when 𝜎𝑢
2 = 0.04 

IL   3.0290 3.0201 3.0189 3.0172 2.1676 3.0290 3.0290 3.0290 

SL   3.0241 3.0204 3.0114 3.0074 3.0269 3.0241 3.0241 3.0241 

EL   4.5584 4.2984 4.2524 4.2134 4.5494 4.2684 4.1468 4.0826 

  k=1 
Multiple measurement 

RSS 
increasing sample size 

k=2 k=3 k=5 n=6 n=8 n=10 

1 199.643 200.816 199.534 199.522 200.253 201.78 199.204 199.741 

1.2 45.528 40.580 38.331 37.696 43.160 29.313 22.873 17.319 

1.4 16.130 14.491 13.663 13.474 15.798 9.869 7.483 6.036 

1.6 8.885 7.836 7.659 7.625 8.638 5.441 4.183 3.551 

1.8 5.873 5.156 5.001 4.893 5.629 3.795 2.963 2.516 

2 4.479 3.983 3.890 3.814 4.242 2.754 2.303 1.956 

2.2 3.607 3.194 3.123 3.078 3.448 2.399 1.968 1.714 

2.4 3.051 2.745 2.645 2.635 2.871 2.021 1.669 1.487 

2.6 2.456 2.440 2.337 2.313 2.481 1.789 1.486 1.332 

2.8 2.277 2.083 2.067 2.058 2.255 1.583 1.371 1.227 

3 2.020 1.913 1.897 1.862 2.052 1.473 1.263 1.14 

 

Table 11. ARLs of remedial approaches in T2 chart under shifts in 𝛽0 when 𝜎𝑢
2 = 0.04 

UCL 15.6866 15.5729 15.5599 10.5178 15.4896 12.0000 10.4603 9.7187 

0  k=1 
Multiple measurement 

RSS 
Increasing sample size 

k=2 k=3 k=5 n=6 n=8 n=10 

3 202.2075 199.4289 200.2399 202.3810 202.6230 201.0561 199.7367 200.0940 

3.2 131.5736 126.3640 121.1526 120.2241 129.2083 118.5529 116.2991 123.0383 

3.4 55.4392 52.9146 51.6215 50.1912 55.9009 44.6357 42.4279 44.6097 

3.6 24.5755 23.1632 22.1306 21.6579 24.8869 17.9641 15.6114 15.6941 

3.8 12.1850 11.0994 10.8567 10.3899 12.0005 8.0928 6.8284 6.3067 

4 6.5763 5.9643 5.8161 5.6716 6.4905 4.2584 3.4097 3.0243 

4.2 4.0398 3.5887 3.4584 3.3865 3.9495 2.5607 2.0834 1.8430 

4.4 2.6240 2.4267 2.3764 2.2856 2.6177 1.7758 1.4835 1.3433 

4.6 1.8929 1.7569 1.7464 1.7052 1.8806 1.4115 1.1988 1.1144 

4.8 1.4988 1.4182 1.4017 1.3805 1.4866 1.1873 1.0759 1.0390 

5 1.2796 1.2279 1.2119 1.1879 1.2657 1.0792 1.0247 1.0099 

 

Table 12. ARLs of remedial approaches in T2 chart under shifts in 𝛽1 when 𝜎𝑢
2 = 0.04 

UCL 15.6866 15.5729 15.5599 10.5178 15.4896 12.0000 10.4603 9.7187 

1  k=1 
Multiple measurement 

RSS 
Increasing sample size 

k=2 k=3 k=5 n=6 n=8 n=10 
2 202.2075 199.4289 200.2399 202.3810 202.6230 201.0561 199.7367 200.0940 

2.025 170.9360 167.3911 160.6785 163.7788 169.5597 157.1161 164.1008 171.6316 

2.050 107.1641 105.1903 106.3814 104.6275 104.4821 96.0579 97.5662 100.1347 
2.075 63.8460 63.0219 62.0686 61.6160 63.9408 53.4925 51.4281 55.5351 

2.100 38.7724 36.5657 35.6803 34.9352 35.8472 29.5911 26.9286 28.3027 

2.125 22.5777 21.5263 21.4652 21.6798 23.1531 16.8320 14.5689 14.5148 
2.150 15.1654 13.4507 13.5525 13.1943 14.1029 10.2177 8.6438 7.6737 

2.175 9.7245 8.8835 8.7131 8.6377 9.6917 6.3543 5.0994 4.5853 

2.200 6.6023 5.9712 5.9076 5.6589 6.2834 4.1534 3.4372 3..0048 
2.225 4.6684 4.3342 4.2180 4.1512 4.6617 3.0729 2.4599 2.1406 

2.250 3.4195 3.1705 3.2157 3.1072 3.4144 2.2580 1.8480 1.6372 
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Table 13. ARLs of remedial approaches in T2 chart under shifts in 𝜎 when 𝜎𝑢
2 = 0.04 

UCL 15.6866 15.5729 15.5599 10.5178 15.4896 12.0000 10.4603 9.7187 

  k=1 
Multiple measurement 

RSS 
increasing sample size 

k=2 k=3 k=5 n=6 n=8 n=10 

1 202.2075 199.4289 200.2399 202.3810 202.6230 201.0561 199.7367 200.0940 

1.2 101.6049 94.7838 92.2298 94.1701 99.6060 95.5580 95.1960 94.6360 

1.4 56.2428 52.3460 50.9836 51.7580 57.7461 51.8065 50.7440 53.9060 

1.6 37.3530 34.3042 33.0529 32.6370 37.4673 33.4905 34.2365 35.2810 

1.8 27.6202 24.3028 24.8623 23.2745 26.1062 24.4775 23.9700 25.5295 

2 19.2646 18.4189 17.4450 17.4702 19.6970 18.0755 18.1560 18.7440 

2.2 16.0198 14.5617 13.9818 13.3626 15.8358 13.9950 14.1615 14.8410 

2.4 12.6644 12.0286 11.5582 11.4561 12.3729 11.4600 11.4495 11.7190 

2.6 10.9065 9.7943 9.7419 9.2139 10.4800 9.4940 9.7210 10.1985 

2.8 9.3397 8.2912 8.0791 8.0429 8.8343 8.2095 8.3885 8.5355 

3 8.1601 7.3439 7.1449 7.1281 7.9894 7.5210 7.2140 7.4815 

 

7. Conclusion and future study 
 

As a relatively new area in the context of 

SPM, profile monitoring has gained much 

attentions after the review paper by 

Woodall (2007). To the best of the authors’ 

knowledge, all profile monitoring 

approaches have neglected the effect of 

errors cause by measuring instrument, 

environment and work-pieces on the 

capability of control charts. To address this 

issue, the effect of ignoring measurement 

errors on the performance of EWMA-3 and 

Hotelling T2 charts to monitor simple liner 

profiles under random explanatory variable 

was investigated in this paper. Thorough 

simulation studies, we showed that ignoring 

the measurement errors adversely affects 

the detecting ability of the both mentioned 

charts. We also showed that as the variance 

of measurement error term increases, the 

ability of both charts to detect step shifts in 

intercept parameter, slope parameter and 

error variance reduces. In order to 

compensate the measurement errors effects, 

three remedial approaches including ranked 

set sampling, multiple measurements per 

unit as well as increasing sample size were 

utilized. The results showed that all 

suggested remedial approaches can 

adequately reduce the effect of 

measurement errors. The methods 

discussed in this paper have been proposed 

under three general limitations. First we 

considered a simple linear regression model 

to express the relationship between 

response and explanatory variables. 

Second, it was assumed that the response 

variable follows a Normal distribution. The 

last limitation is the assumption in which 

the observations within each profile are 

independent from each other. Concerning 

the first and second limitations, considering 

other types of regression models under non-

normality assumption such as generalized 

linear models with Binary or Poisson 

response data is recommended as the future 

research. Developing time-series models to 

address autocorrelation structure of data is 

suggested to fulfill the third limitation. 

Moreover, utilizing other remedial 

approaches for decreasing the errors effect 

on profiling monitoring control charts could 

be mentioned as another research direction 
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