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ANALYSIS OF AN ELEVATOR SYSTEM 

USING DISCRETE EVENT SIMULATION: 

CASE STUDY 

 
Abstract: This paper documents the work conducted to 

simulate an elevator system, using SIMIO software. The 

modelled system represents a case study that was analyzed in 

a hospital at Braga, Portugal. A previ-ous work on the same 

case study concluded that the best dwell time configuration 

would be around 10 seconds, however it did not consider the 

impact of different client demand on the elevator system. In this 

sense, this paper analyses the impact of both parameters on the 

performance of the system. This will be achieved by analyzing 

the impact on the total time spent by clients in the system, the 

number of clients inside the system, and waiting for the 

elevator, waiting time, average elevator occupation and 

number of elevator movements. Conclusions and future work 

agenda were discussed in the conclusions section. 

Keywords: Elevator; Management systems; Agents 

Modelling; 3D Simulation; SIMIO; Case study. 

 

 

1. Introduction  
 

Moving people and cargo in a vertical way is 

the most typical objective of an elevator 

system. In the core of an elevator system there 

is its management system, responsible for 

deciding the next elevator movement to be 

performed, through its algorithm, based on 

multiple inputs. A basic algorithm for a sys-

tem with only one elevator installed, as is the 

model used in the present case study, can be 

described as follows (Setchi, 2010): 

• Move in a certain direction, up or 

down, stopping at all floors, where 

there are calls or destina-tions 

registered; 

• Change its direction, when there are 

no calls or destinations at floors 

beyond the current floor in the 

current direction, or when it reaches 

the last floor, changing from going 

down to going up –when it reaches 

the bottom floor – or changing from 

going up to going down – when it 

reach-es the upper floor; 

• Stop, in case there are no calls or 

destinations registered in the system. 

Changing an elevator system, or simply its 

algorithm, can be costly, and can imply 

system inopera-bility for a period of time. By 

simulating an elevator system, it is possible to 

change the system partially or entirely in a 

virtual way, allowing for a measurement of 

such changes in the system performance, 

without stopping the current system or invest 

in a trial and error approach. This tactic 

allows for cost savings and avoid system 

inoperability. These measurements of the 

changes in the system performance allow top 

management to take decisions based on 

simulation data. The simulation approach can 

help both top management when deciding 

which system to implement, and elevator 

OEMs when defining system parameters. 
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Examples of such parameters are, for 

example, elevator capacity or dwell time; the 

latter representing the time that the elevator 

remains at each floor, with its doors open, to 

let clients in and out. 

Dwell time is a parameter crucial to all system 

KPIs (Key Performance Indicators), but 

mainly for the total time of each client 

(waiting time plus travel time). A high dwell 

time may: 

• Increase the probability of clients 

entering the elevator at the floor it 

stopped, thus diminishing client 

waiting time on that floor; 

• Increase the waiting time of clients 

calling the elevator at other floors. 

• Increase travel time, due to the 

increment of stop time at each floor 

where the elevator stops in between 

his or her origin and destination 

floor. 

By contrast, a low elevator dwell time may: 

• Decrease the probability of clients 

entering the elevator at each floor in 

which the elevator stops, as the 

“opportunity window” is smaller, 

and, consequently, increase the 

waiting time of such clients; 

• Decreasing the waiting time on other 

floors where clients are waiting, due 

to the following point; 

• Increase the elevator movements, 

because it spends less time stopped; 

• Increase the energy consumed by the 

system, as there are more 

movements, due to more mo-tor 

starts to move the elevator cabin and 

its counter-weight. 

A balance among these points is needed, 

making the dwell time value essential for 

clients, to whom a fast arrival to the 

destinations is important; and system owners, 

that strive for a good system perfor-mance on 

both time and energy. Thus, a balance 

between energy and time is needed. 

This paper uses the elevator model 

demonstrated in a previous work (Henriques 

et al., 2016), where an elevator system was 

modelled using the SIMIO software to 

evaluate the recommended dwell time of a 

given client demand. In this paper, different 

client demand scenarios, called intensity 

scenarios, were created. To this end, the 

simulation model was adapted, in order to add 

the necessary properties to model the 

intensity scenarios, which replicate a different 

client demand. 

This paper starts with the present 

introduction, to highlight the importance of 

this study. The section number 2, Literature 

review, describes a literature review of 

elevator systems and discrete simulation, 

focused on the tool used: the SIMIO software. 

Section 3, Simulation Model, demonstrates 

the elevator model developed and the process 

responsible for the elevator algorithm. The 

following section, number 5, Simulation 

Experiments, details the parameters defined 

for the experiments ran and the data retrieved 

on six graphs. 

 

2. Literature review 
 

Most recent models of elevator group 

management systems (e.g. Destination 

Dispatch) had, in their genesis, tests and data 

retrieved from using computing simulation. 

One simulation tool that outstands in the 

elevator industry is the software Elevate® 

(Barney & Al-Sharif, 2015), which allows to 

simulate and analyse elevator traffic, with 

support for different configurations and 

applications, e.g. two floors eleva-tors, an 

elevator system with different speeds and 

different attending floors (“About Elevate”, 

2016). This software runs on Windows™ and 

was developed by the London-based 

company Peters Research. Another 

innovation by this company is the software 

Elevate Live™, which allows checking the 

status of the elevator management system in 

real time (“About Elevate Live”, 2016). 

This software is not the only simulation tool 

used in the elevator industry, but it is one of 

the most referred and promoted. But, 

considering the unwill to share information, 
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protect intellectual property and maintain a 

market advantage, companies of this industry 

tend to not reveal which tools are used. 

But the need and use of simulation in this field 

is real (Barney & Al-Sharif, 2015; Hakonen 

& Siiko-nen, 2009; Zhang & Zong, 2014), 

because elevator models can reach high levels 

of complexity. Taking for instance the 

Shangai Tower, where hundreds of elevators 

travel vertically, with certain restrictions and 

different purposes, the level of complexity 

associated to this system becomes obvious. 

The number of simulation tools can be very 

high. Thus, its comparison becomes a very 

important task. However, most scientific 

works related to this subject “analyse only a 

small set of tools and usually evaluating 

several parameters separately, to avoid 

making a final judgement due to the 

subjective na-ture of such task” (Dias et al., 

2007). 

Hlupic and Paul (1999) compared a set of 

simulation tools, distinguishing between 

users of software for educational purpose and 

users in industry. In his turn, Hlupic (2000) 

developed “a survey of academ-ic and 

industrial users on the use of simulation 

software, which was carried out in order to 

discover how the users are satisfied with the 

simulation software they use and how this 

software could be further im-proved”. Dias et 

al. (2007) and Pereira et al. (2011) comparing 

a set of tools based on popularity on the 

internet, scientific publications, WSC (Winter 

Simulation Conference), social networks and 

other sources claim: “Popularity should never 

be used alone otherwise new tools, better than 

existing ones would never get market place, 

and this is a generic risk, not a simulation 

particularity” (Dias et al., 2007), however, a 

positive correlation may exist between 

popularity and quality, since the best tools 

have a greater chance of being more popular. 

According to the authors, the most popular 

tool is ARENA, (Kelton et al., 2009), and the 

good classification of SIMIO is noteworthy. 

Based on these results, Vieira et al. (2014) 

compared both tools taking into consideration 

several factors. This last referenced paper is 

also a good source of information for 

researcher and practitioners, since it 

compares SIMIO with the most popular tool 

(ARENA), giving some basic examples. 

SIMIO has two main levels for modelling. 

One more simple called ‘Facility’, suitable 

for practition-ers without computer science 

background, where one can create models in 

a building-block approach over a physical 

layout, providing a realistic 3D animation. 

The second level, called ‘Process’, enables 

the creation of detailed behaviour using 

logical flow charts to specify virtually 

anything. 

Processes, once created, can be used 

anywhere in the ‘Facility’ level. Moreover, 

processes can be “attached” to Entities 

(objects), enabling them to react actively and 

autonomously. This behaviour pushes SIMIO 

“living” objects to agents. It is controversial 

to consider SIMIO objects as intelligent, once 

such term has a connotation to support logical 

programming and self-learning ability. 

Another relevant capability is the support for 

object class hierarchy, allowing the extension 

of exist-ing objects rather than creating from 

scratch, i.e. an object can be generic and used 

multiple times inside another object, that can 

be part of a model, e.g. a house can be an 

object inside a neighbourhood, that is an 

object of a city model. 

SIMIO is based on intelligent objects 

(Sturrock & Pegden, 2010; Pegden, 2007; 

Pegden & Sturrock, 2011). These “are built 

by modellers and then may be used in 

multiple modelling projects. Objects can be 

stored in libraries and easily shared” (Pegden, 

2013). Unlike other object-oriented systems, 

in SIMIO there is no need to write any 

programming code, since the process of 

creating a new object is completely graphic 

(Pegden & Sturrock, 2011; Pegden, 2007; 

Sturrock & Pegden, 2010). The activity of 

building an object in SIMIO is identical to the 

activity of building a model. In fact, there is 

no difference between an object and a model 

(Pegden, 2007; Pegden & Sturrock, 2011). A 
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vehicle, a customer or any other agent of a 

system are examples of possible objects and, 

combining several of these, one can represent 

the components of the system in analysis. 

Thus, a SIMIO model looks like the real 

system (Pegden & Stur-rock, 2011; Pegden, 

2007). This can be very useful, particularly 

while presenting the results to someone 

unfamiliar to simulation. 

In SIMIO, the model logic and animation are 

built in a single step (Pegden & Sturrock, 

2011; Pegden, 2007). This makes the 

modulation process very intuitive (Pegden & 

Sturrock, 2011). Moreover, the animation can 

also be useful to reflect the changing state of 

the object (Pegden, 2007). In addition to the 

usual 2D animation, SIMIO also supports 3D 

animation as a natural part of the modelling 

process (Sturrock & Pegden, 2010). To 

switch between them the user only needs to 

press a specific key (Sturrock & Pegden, 

2010). Moreover, SIMIO provides a direct 

link to Google Warehouse (Pegden & 

Sturrock, 2011). 

SIMIO offers two basic modes for executing 

models: interactive and experimental. In the 

first it is possible to watch the animated 

model, which is useful for building and 

validating the model. In the sec-ond, it is 

possible to define properties of the model that 

can be changed (Sturrock & Pegden, 2010). 
 

3. Simulation model 

 
In this section, the developed simulation 

model will be covered. A detailed description 

of it can be found on a previous publication 

(Henriques et al., 2016). 

In this context, the developed process 

responsible for enhancing the elevator object 

and transforming it into an agent is the one 

depicted in Figure 1. This process is initiated 

upon the start of each model run, and is 

executed on an infinite loop. 

 

 

 
Figure 1. Process containing the elevator algorithm 

 

This process is responsible for creating the 

elevator and giving it the intended behaviour, 

such as travelling inside the elevator shaft, 

wait for clients, decide which floor to go next, 

among other aspects. This further configure 

an agent modelling approach, since the tool 

allows the user to detail the behaviour of all 

objects, including entities, as is the case of the 

clients and the elevator itself. 

To ensure the elevator stops at all floors 

which have calls registered or a client inside 

the elevator wants to exit, the process 

represented in Figure 2 is executed whenever 

the elevator arrives at a given node that 

represents a floor. 
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Figure 2. Process responsible for deciding an elevator stop 

 

This process analyses if the elevator has 

arrived on the floor which was assigned to it 

as a destina-tion in the previous process. If 

not, it will be verified if there are calls placed 

on that floor, ensuring that the elevator still 

has room to let clients in, or if any client 

riding it wants to exit at the current floor. If 

the current node is the elevator destination, 

has a call placed or is the destination of a 

client inside the eleva-tor; the next steps will 

ensure that the elevator stops, and will model 

the dwell time, allowing clients to exit or to 

enter onto the elevator. Afterwards, an event 

will be fired to indicate that the elevator can 

resume its trip, allowing the process 

represented in Figure 1 to continue its loop. In 

this regard, communication be-tween these 

two processes is necessary and ensured, since 

both processes are executed in parallel. 

To raise clients from objects to agents, the 

process illustrated in Figure 3 is run upon 

client creation. 

 

 
Figure 3. Process ran by clients while inside the system 

 

This process is responsible for assuring each 

client waits for the elevator, calls the elevator, 

enters it when the elevator is on same floor as 

the client, and the client gets out of the 

elevator onto the last path into the sink of the 

destination floor. Figure 4 shows the model 

during its run. 

As can be seen, the model is comprised by 

seven floors. As they are created, entities 

travel until the end of the respective paths of 

each floor, where they will be able to call the 

elevator, through another process. Thereafter, 

the elevator evaluates the many requests it has 

received and travels to the floors to allow the 

entrance and exit of clients. Finally, clients 

are transported to the intended destination and 

eliminated of the system. 
 

 
Figure 4. Simulation model during its 

execution 
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In the next section, simulation experiments 

conducted are analysed. 

 

4. Simulation experiments 
 

Experiments are one of the most important 

tools in SIMIO, as it allows testing the impact 

of different model properties, in which each 

combination of values corresponds to a 

different scenario. The properties of the 

model used are: 

 Random exponential value for inter-

arrival time of the source placed on 

the ground floor (number one): 

regulating the inter-arrival time 

between each client creation on that 

floor; 

 Random exponential value for inter-

arrival time of the sources placed on 

the upper floors (number two to 

seven): regulating the inter-arrival 

time between each client creation on 

those floors; 

 Dwell time: time in which the 

elevator remains at each floor, with 

its doors open, to let clients in and 

out; 

 Elevator capacity: maximum 

number of clients that the elevator 

can transport. 

In this paper, the elevator capacity will be 

linear at 21 clients. This is a high number in 

order to not being a limitation in high demand 

cases, i.e. in cases where a high value of 

clients is created, this elevator capacity will 

be in line with systems installed on high 

demand applications, not being the system 

bottleneck. 

The dwell time will be changed from 1 to 20 

seconds, in order to have a good 

representation of this property. 

The creation of clients will range from an 

average of 473,0 to 1296,6 clients per hour, 

which is a high demand on the elevator 

model, which has only one elevator. This is 

achieved with the inter-arrival time on a 

random exponential of 0,8 and 0,9, to 0,1 to 

0,2 minutes, on the ground floor and upper 

floors, respectively, on both cases. Table 1 

gives a better representation of client 

creation: 

 
Table 1. Value of the properties in the Source objects and clients generated per hour 

Intensity 

Acronym 

SIMIO Expression Average number of 

entities created per 

hour 
Ground floor Upper floor 

i1 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,1) 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,2) 1032,54 

i2 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,2) 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,3) 1016,99 

i3 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,3) 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,4) 923,03 

i4 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,4) 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,5) 818,17 

i5 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,5) 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,6) 710,04 

i6 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,6) 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,7) 612,85 

i7 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,7) 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,8) 763,74 

i8 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,8) 𝑅𝑎𝑛𝑑𝑜𝑚. 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑐𝑖𝑎𝑙(0,9) 474,87 

 

Table 1 shows the SIMIO expression that was 

able to model the different intensities of 

creation of entity clients. It is important to 

note that these expressions regulate the inter-

arrival time, in minutes, where a lower inter-

arrival time translates into a bigger generation 

of entity clients. 

The left column shows the ‘Intensity 

Acronym’ – the term used on the remaining 

of this document to refer to each of the 

intensity scenarios. The centre columns show 

the expression used in SIMIO to model the 

different inter-arrival time on each scenario. 

The centre left values correspond to the 

ground floor, while the centre right values are 

for the upper floors. The expression 

considered for the upper floors is slightly 

higher – translating to a higher inter-arrival 
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time, thus creating less entity clients – as the 

ground floor is the main entrance one, thus 

being the most used. Lastly, the right column 

shows the average number of entities created 

per hour in the system. These values represent 

a mixed movement of clients inside the 

system, replicating a typical week day during 

work hours. 

A warm-up time of 1 hour was used. This 

decision was made due to the fast reach of a 

warm-up state by the model, as the creation of 

clients is of a high frequency. 

To decide the number of replications tests 

were conducted. A total of 25 tests were 

made, keeping all properties with the same 

value: 10 seconds for dwell time, 21 clients 

for the elevator capacity and 0,5 and 0,6 for 

the random exponential in the inter-arrival 

time, respectively, in minutes. The number of 

replications was changed from 1 to 25. Table 

2 shows the change in data as the number of 

experiments increases. Each value represents 

the average of the data retrieved in each 

scenario. 

 

Table 2. Impact of replications on the KPIs 

Replications 

Average 

total time 

[minutes] 

Average 

waiting 

clients 

Average 

occupation 

Average 

number of 

clients in the 

system 

Average 

elevator 

movements 

Average 

waiting 

time 

[seconds] 

1 2,59 21,22 10,30 31,88 6899,00 23,04 

2 3,03 26,57 10,33 37,26 6901,00 23,02 

3 3,61 33,61 10,34 44,30 6902,00 23,00 

4 3,40 31,02 10,34 41,71 6899,25 22,96 

5 3,32 30,25 10,33 40,92 6897,60 22,95 

6 3,26 29,51 10,32 40,18 6898,33 22,96 

7 3,13 27,90 10,33 38,58 6897,71 22,97 

8 3,09 27,49 10,34 38,17 6898,13 22,98 

9 3,02 26,56 10,33 37,23 6897,89 22,98 

10 2,98 26,13 10,32 36,80 6897,80 22,97 

11 2,93 25,51 10,33 36,19 6897,64 22,95 

12 2,93 25,62 10,34 36,31 6897,67 22,95 

13 2,88 24,92 10,34 35,61 6897,38 22,94 

14 2,84 24,42 10,34 35,10 6896,57 22,93 

15 2,81 24,10 10,34 34,79 6896,87 22,93 

16 2,79 23,86 10,33 34,54 6896,56 22,93 

17 2,79 23,83 10,33 34,50 6896,59 22,93 

18 2,79 23,80 10,33 34,47 6896,33 22,92 

19 2,84 24,45 10,33 35,13 6896,79 22,93 

20 2,81 24,09 10,33 34,77 6896,50 22,92 

21 2,79 23,91 10,33 34,58 6896,86 22,92 

22 2,80 24,01 10,32 34,68 6896,91 22,93 

23 2,79 23,87 10,32 34,54 6896,74 22,93 

24 2,79 23,84 10,32 34,51 6896,75 22,93 

25 2,77 23,59 10,33 34,27 6897,12 22,93 

 

By evaluating these values, it is possible to 

conclude that the numbers tend to stabilize 

around 16 to 20 replications, depending on 

the parameter analysed. As such, the number 

of replications chosen was 20. 

Once the model was developed and validated, 

data was retrieved from it, in order to get 

relevant information that would lead to 

conclusions about the developed model. One 

of the major benefits of using SIMIO is the 
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possibility of conducting simulation 

experiments on a model. 

A simulation experiment allows for executing 

a set of scenarios with different values for the 

model properties, and the impact of those 

changes on the model KPIs (Key 

Performance Indicators). In the present 

model, dwell time is the main model property 

in study, being changed from 1 to 20 seconds. 

The other model properties changed on each 

scenario was the inter-arrival time of the floor 

sources – mentioned above and enumerated 

on Table 1. The other implemented property 

is the capacity of the elevator, that can be 

analysed in future studies. 

In total, 160 scenarios were run (1 to 20 

seconds of dwell time, times i1 to i8 

intensities), with 20 replications each. To 

conduct the experiments a laptop computer 

was used, with the following specifications: 

Intel Core i7-3630QM processor, clocked at 

2,40GHz, and 16GB of DDR3 RAM. The 

processing time of each replication was 

between 6 to 140 seconds, depending on the 

intensity scenario. 

The dwell time is crucial to the total time of a 

client (waiting time plus travel time) because 

if it is increased, it increases the probability of 

clients entering the elevator at a floor, thus 

diminishing client waiting time on the current 

floor; but will also increase the waiting time 

of clients in other floors. If this time is 

decreased, the probability of clients entering 

the elevator at each stop decreases and the 

elevator will move more, thus decreasing the 

waiting time on other floors. A balance 

between these two possibilities needs to be 

found. In order to have a good representation 

of the impact of this property on all KPIs, the 

value will vary from 1 to 20 seconds. To note 

that a value of dwell time with a good 

performance on a specific KPI, e.g. average 

client total time, at up-peak time can have a 

bad performance on a mixed or down-peak 

movement of clients, as calls can be placed in 

a more focused area of the building, e.g. the 

ground floor, or can be spread across all 

floors. The focus was, therefore, to analyse 

the impact of dwell time in the system 

performance, namely the following KPI 

established: 

 Average total time in the system, per 

client: sum of waiting time and 

travel time, of the clients; 

 Average elevator occupation (or 

load): number of clients riding the 

elevator; 

 Elevator movements: number of 

movements executed by the elevator 

in the simulation runtime; 

 Average number of clients waiting: 

number of clients that are waiting for 

the elevator, in all floors; 

 Average waiting time per client. 

In order to ensure that the results do not 

contain irrelevant data, as a result of the time 

needed for the system to achieve a "full-

operating status", it is very important to 

define an accurate warm-up period. In this 

context, a warm-up period of 3600 seconds 

was defined because, on the several tests 

conducted, it was found that from this time 

on, the KPI values achieved a more stable 

status. Furthermore, 10 replications were 

used, to ensure that different random number 

seeds are used. The simulation time in the 

experiments was 24 hours. Graphs 1 to 6 

illustrate the obtained results. The first graph 

(Graph 1) shows a relation between the dwell 

time of the elevator and the average total time 

in minutes spent by clients in the system. 

According to Graph 1, the scenarios modelled 

with higher intensities were more sensitive to 

the change of the dwell time, than the 

scenarios modelled with lower intensities. 

Furthermore, it can also be stressed that the 

dwell time with the best values for the 

scenarios with lower intensity are around 5 to 

7 seconds, for i6, i7 and i8. Scenarios i5 and 

i4 have the best performance at around 9 to 11 

seconds.  Sce-narios i3, i2 and i1 achieve the 

lowest total time at around 7 to 9 seconds. 

These values are explained through the 

opportunity window of dwell time, when the 

client is arriving and the elevator is still in the 

floor, and he or she is able to enter it. This 
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graph and the analysis show the importance 

of a good evaluation of the site where the 

elevator system will be installed, i.e. the dwell 

time to be implemented will depend on the 

client demand. 

Graph 2 shows the relation between the dwell 

time of the elevator and the average number 

of clients waiting for the elevator. 

 

 
Graph 1. Average total time per client in minutes 

 

 
Graph 2. Average total waiting clients 
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By analyzing Graph 2, it can be observed that 

for high intensities, as well for lower 

intensities, the KPI in question suffers slight 

changes, whilst for medium intensities, the 

variation of the KPI, in response to different 

dwell times of the elevator is higher. This low 

response is explained in two stages: in the 

lower intensities, the elevator is ready to 

answer the calls coming from the arriving 

clients, as there are few peo-ple in the system, 

and there are not many clients waiting. While 

in the higher intensities the elevator sys-tem 

is already in too much stress, not being able 

to answer as quickly to each call that comes 

in, i.e. the elevator stops at almost all floors, 

leaving and receiving clients. 

In the i6, i7 and i8 lower intensities, the 

lowest values are reached at the 5 to 8 seconds 

band. The i4 and i5 scenarios achieve the 

lower average total waiting clients at 11 to 14 

seconds. The higher intensities i3, i2 and i1 

have the lowest average at around 9 to 11 

seconds. 

Graph 3 illustrates the change in the average 

elevator occupation, as the dwell time 

increases, for the eight different client 

creation scenarios. 

 

 

 
Graph 3. Average occupation of the elevator 

 

The average occupation in Graph 3 shows that 

the high intensity scenarios reach the 

maximum oc-cupation of the elevator faster, 

at 21 clients. At the 17 seconds of dwell time, 

i1, i2 and i3 scenarios reach the average 

occupation at the maximum capacity of the 

elevator. The i4 scenario reaches it at 20 sec-

onds. This demonstrates that these scenarios 

put the system into its limits. 

As for dwell time performance, this KPI 

shows that dwell time will affect the 

occupation in a propor-tional way, except for 

the 1 second time, i.e. after the 2 seconds 

time, the average occupation grows pro-

portionally to the increase of the dwell time 

property. This is explained by the less time 

available to enter the elevator: if the dwell 

time is low, less clients are able to enter the 

elevator and ride it. 

Graph 4 represents the impact of dwell time 

on elevator movements, in the different 

scenarios. 
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Graph 4. Number of movements executed by the elevator 

 

Graph 4 demonstrates the negative impact of 

a high dwell time on the number of elevator 

move-ments. With a high dwell time, despite 

having a higher intensity of clients, the 

elevator will move no more than with a lower 

intensity scenario. It is confirmed that a low 

dwell time will increase the number of 

elevator movements, thus increasing the 

energy consumption of the system. 

Graph 5 shows the average waiting time of 

clients in the system as a response to dwell 

time, for the various intensity scenarios. 

 

 
Graph 5. Average waiting time per client in seconds 
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Graph 5 shows that the minimum values of 

average waiting time, for all intensity 

scenarios, are reached at around 5 to 8 

seconds of dwell time. It is important to stress 

that these values are low, at 18 to 23 seconds 

of waiting time. 

The scenarios order in the graph registers a 

change at around 4 seconds. While, towards 

15 and 20 seconds, some scenarios, especially 

the higher ones, change its direction. This 

reorder at around 4 seconds of dwell time 

demonstrates the more sensitive nature of 

lower intensity scenarios to dwell time, i.e. as 

there is a low intensity of clients, a high dwell 

time does not benefit those systems, as the 

elevator is stopped for longer periods, but no 

more clients enter it beside the one that placed 

the call. 

Graph 6 confronts the average occupation 

with the number of elevator movements. 

These two KPIs are the basis for the system 

energy consumption. The left vertical scale 

shows the number of elevator movements, 

representing the decreasing lines along the 

graph. The average elevator occupation is 

shown in the increasing lines along the graph, 

having the right vertical scale as its reference. 

 

 

 
Graph 6. Relation between elevator movements and average occupation in function  

of dwell time 
 

Graph 6 shows that the average occupation is 

the key KPI when evaluating the energy 

consumption of the system, on a comparison 

of different scenarios, as the number of 

elevator movements in all the scenarios tends 

to the same value, independently of the 

intensity of each scenario. 

Upon evaluating the average elevator 

occupation, it is possible to see that, as the 

intensity decreas-es, a high dwell time will 

correspond to the point of less energy 

consumption, as the 40% elevator capaci-ty – 

usually the value calculated for the counter-

weight – mark of the lower intensity scenarios 

is at the right side of the graph. 

 

5. Conclusions 
 

An elevator system was modelled in SIMIO 

- a recently developed discrete simulation 

tool. The simulation model was based on an 

Hospital located in the north of Portugal. The 
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tool was chosen due to its similarities to 

ARENA - the most used simulation tool 

worldwide - since they were developed by the 

same authors. Moreover, it fully supports 3D 

animation, which results on very appealing 

simulation models, which also contributes for 

a better understanding of the system in its 

execution. 

To evaluate the performance of the system, 

the following Key Performance Indicators 

(KPI) were defined: average total time; 

average occupation; number of elevator 

movements; average of waiting clients on all 

floors; and average waiting time. 

By analyzing the graphs, it is possible to 

conclude that the lower intensities i8, i7 and 

i6 reach the best performance at around 5 to 7 

seconds, consuming less energy at the higher 

dwell time value. The middle intensities in 

scenarios i5 and i4 have the best performance 

at around 11 seconds. The higher intensities 

i3, i2 and i1 reach the best performance at 

around 9 seconds – confirming the 

conclusions from the previous study. These 

values show that there is not a direct relation 

between dwell time and client demand, i.e. 

the lower and high intensity scenarios benefit 

from a lower dwell time, as there are few 

clients to attend or many other calls in other 

floors to attend, respectively; whilst on the 

medium intensity scenarios, the bigger dwell 

time improves the system performance. 

These values enhance the importance of 

retrieving data from the site in which the 

elevator system will be implemented, in order 

to have a good idea of the client demand and 

adapt the system to it. A good performance 

can only be achieved if the elevator system is 

adapted to its environment. 

By re-using previously defined SIMIO 

objects in other models, this elevator model 

can be used on future research. For instance, 

in a multiple elevator system, where ETD 

(Estimated Time to Destination), or other 

algorithms, could be implemented. 

Furthermore, the power consumption of the 

elevator system could also be quantified, as 

well as the consideration to implement 

different management systems, taking 

advantage of the modelling of the elevator as 

an entity; therefore, giving more options to 

the modeller, as the entity logic is already in 

place, and its properties were defined in a way 

that the user can simply modify its values in a 

simple combo box. 
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