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QUALITY AND PRODUCTIVITY IN 
AQUACULTURE: PREDICTION OF 

OREOCHROMIS MOSSAMBICUS GROWTH 
USING A TRANSFER FUNCTION ARIMA 

MODEL 
 

Abstract:The cultivation of aquatic species in aquaculture 
aims at improving fish production, making the activity more 
dependent on human capacity, especially with what concerns 
to the application of efficient methods for its management. 
The weight and standard length are the biometric parameters 
mostly used to control the growth of tilapia in the cultivation 
process. In this work there is presented a statistical method 
based on transfer function ARIMA model to adjust and 
predict the weight of tilapia with the support of the values of 
the standard length. The model was adjusted to the data 
recorded in 21 weeks in the tilapia growing tank of the 
company Aquapesca de Moçambique, and the results showed 
that there was a good adjustment (with an explained 
variability of 97.8%) with which the model can be used to 
predict the future values of tilapia weight and make the 
activity more controllable and profitable. 
Keywords: ARIMA model, Transfer function, predict, 
Aquaculture, Tilapia. 
 

 
 
1. Introduction  
 
According to the FAO (Food and 
Agriculture Organization of the United 
Nations) aquaculture is defined as the 
production of aquatic organisms, the creation 
of fish, molluscs, amphibians, reptiles and 
the cultivation of aquatic plants for human 
consumption.  
Based on its commitment in creating and 
managing aquatic resources living in a 
restricted environment, aquaculture is much 
more related to agriculture and livestock 
than to fishing. 
While in fishing and hunting there are 
collected animals by free access, in 
aquaculture, property rights and resources 

are required. Ownership of the means of 
production and property rights are as 
important in aquaculture as land tenure is in 
agriculture (Acuña, 2006).  
Production in aquaculture requires an 
intervention of human capacity throughout 
the cultivation process in order to obtain 
better results. To this end, modern 
industrialized aquaculture is an activity with 
a strong scientific-technical component and 
is associated to several disciplines such as 
Biology, Engineering and Economics 
(Acuña, 2006).  
Currently, aquaculture is considered 
responsible for the production of half of the 
fish consumed by the world population. 
Information from Stanford University 
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(Stanford University, 2009) indicates that 
fish production through aquaculture tripled 
between 1995 and 2007. This aspect may be 
associated with the fact that aquaculture is 
the fastest growing zootechnical activity on a 
global scale with rates averages of expansion 
of 6.9% between 1970 and 2006. The 
exponential growth of this activity over the 
last 50 years enabled an increase from less 
than one million tonnes in 1950 to 51.7 
million tonnes in 2006, with a worldwide 
contribution of 50% in world-wide 
consumed aquatic products. 
Aquaculture in Mozambique contributes to 
the family diet, and in addition, the activity 
contributes significantly to the growth of the 
country's economy through export trade of 
fish and job creation. Shrimp and tilapia are 
the most cultivated species.  
The fact that the aquaculture 
industrialization process is relatively fragile 
in Mozambique, monitoring methods aimed 
at controlling key environmental and 
biometric parameters have not yet been 
improved for a large-scale production level. 
Therefore, a field of research is opened to 
improve this aspect.  
Studies related to analysis of biometric 
parameters in aquaculture are limited in the 
relationship between weight and length 
through the growth curves, which determine 
the form of growth of the species (as is the 
case of the study conducted by Garcia, Tume 
and Júarez (Garcia, Tume & Júarez, 2012). 
These models are static, that is, the models 
only relate the values of the same moment of 
the biometric parameters. However, the 
parameters are recorded throughout the 
process of cultivation of the tilapia, which 
should not rule out the hypothesis of 
autocorrelation in the data, and a dynamic 
relationship between the parameters, so that 
their study should be done through a 
methodology of corresponding time series. 
Therefore, this paper seeks to apply a 
transfer function ARIMA model to analyze 
the dynamic relationships between the 
biometric parameters, weight and length, of 

oreochomis mossambicus and improve 
predictions of the species' growth. 
 
2. Literature review 
 
Research on biometric parameters in 
aquaculture is oriented to the estimation of 
growth curves, which are based on a 
function that relates the weight and length of 
the species in the crop. Such is the case of 
Garcia, Tume and Júarez (Garcia, Tume & 
Júarez, 2012) who applies Von Berttalanffy 
curves to analyse the growth of oreochomis 
niloticus. Guerra and Manriquez (Guerra & 
Manriquez, 1979) comments that this 
method is rigorously applied when analyzing 
the growth of one or more individuals, 
weighing and measuring throughout their 
lives. However, this procedure is rarely 
possible and, in general, the value of the 
parameters of the regression is determined 
by comparing the weights and lengths of a 
large number of different sized by one or 
several methods of sampling. 
Statistical methods of prediction were 
applied in aquaculture. In many studies, 
these methods have been used to predict 
water quality in a cropping system. As is the 
case of Palani, Liong and Tkalich (Palani, 
Liong & Tkalich, 2008), who applies 
artificial neural networks to fit a predictive 
model of water quality characterised by 
parameters: temperature, oxygen, salinity 
and chlorophyll-a in the coastal region of 
Singapore. The study was carried out 
basically to analyse the linear and nonlinear 
relationships of the referred environmental 
parameters.  
In 2011 Han, Chen and Qiao (Han, Chen & 
Qiao, 2011) proposed a methodology that 
consists of a radical base function of neural 
networks of flexible structure to predict 
water quality. The author states that the 
methodology can vary its structure 
dynamically in such a way to maintain the 
accuracy of the forecast. In the same year, 
West and Dellana (West & Dellana, 2011) 
performed an empirical analysis on neural 
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networks in structures with memory. 
Similarly to the previous cases, West and 
Dellana study (West & Dellana, 2011) was 
carried out with the purpose of predicting 
water quality.  
An ARIMA model and artificial neural 
networks were applied by Faruk (Faruk, 
2009) in a study oriented to the prediction of 
water quality in aquaculture cultivation 
processes. The author considers that to study 
the pattern of aquaculture process variability 
and to obtain good predictions, the two 
methodologies are necessary, since with 
ARIMA model we cannot model the 
nonlinear relation between the variables and, 
a neural network is not able to model the 
linear and non-linear relationship between 
the variables. The results of the study show 
that the combination of these methods 
provides better results by comparing each 
separately.  
The studies previously presented are limited 
to univariate predictive models, leaving out 
the correlation structure between the 
parameters that retain relevant information 
of the process.  However, the process in 
aquaculture is characterized by many 
parameters correlated with each other, and 
therefore, a multivariate method is necessary 
for its coefficient analysis. To overcome this 
drawback, this paper presents a statistical 
methodology based on transfer function 
ARIMA model to analyse the dynamic 
relationship between biometric parameters 
(weight and length) and make predictions of 
the growth of oreochromis mossambicus.  
Weight is the biometric parameter used as 
such growth indicator, and due to its strong 
relationship with the length, this is included 
in the model to improve its adjustment and 
obtain better prediction of the growth rate of 
tilapia. 
The proposed model plays an important role 
both in the characterization of the growth 
shape of the tilapia (weight-to-length ratio) 
and the possibility of predicting the size of 
tilapia at harvest time. The application of 
this statistical model can improve the 

planning of production in the aquaculture 
industry, ensuring knowledge and control of 
the production system. 
 
3. Material and methods  
 
The study was carried out at the company 
Aquapesca de Moçambique, where there was 
conducted a follow-up three months 
oreochromis mossambicus cultivation, 
grown in open tank with brackish water, and 
fed with feed. Throughout the cultivation 
process, the work was limited to study 
aspects associated with the growth of 
orehochromis mossambicus males, evaluated 
through weight and length.  
At the beginning of the study, 600 
individuals with an average weight of 100g 
and a standard deviation of 10.71g were 
allocated in the tank. Therefore, the tank had 
a total biomass (total weight of the 
individuals) of approximately 60000g.  
The biometric parameters used to evaluate 
the growth of the individuals (weight and 
length) were recorded through weekly 
biometrics, where in each biometry the 
mortality rate that culminated with the 
biomass update was analyzed. The 
individuals extracted and observed in each 
biometry correspond to 10% of the updated 
biomass.  
 
3.1. Biometric Parameters 
 
Biometric parameters refer to the variables 
that characterise the size and fattening of a 
species in aquaculture cultivation. These 
parameters are recorded in the species 
periodically to evaluate their growth and 
development. Weight and standard length 
are the most used biometric parameters for 
tilapia growth control and in this work they 
were recorded as follows: 
(1) Weight  
The weight was recorded through the 
electronic scale, with an accuracy of 0.5g. 
The measurement consisted of weighing a 
sample drawn randomly from the tank 
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corresponding to 10% of the total biomass in 
each biometry, and estimating the mean 
weight (MW). Therefore, each weight data, 
at each time t, corresponds to the mean of 
the weight estimated from the sample drawn 
at that time.  
(2) Standard length  
Standard length of tilapia corresponds to the 
distance from the tip of the mouth to the 
peduncle (the beginning of caudal fin) of the 
individual. After weighing the selected 
sample in each biometry, the standard length 
was recorded with a ruler graduated in 
centimetres.  
The standard length data were recorded in 
each individual; however, to ensure 
matching in the data, that is, for each data of 
length to correspond to exactly one weight 
data, arithmetic mean length (ML) were 
estimated for each sample drawn. 
 
4. Statistical Forecasting Method 

 
4.1. Stochastic process and time series 
 
In order to define the transfer function 
ARIMA model which constitutes the basis of 
the statistical method applied in this work, it 
is appropriate to first address the concepts of 
stochastic process and time series on which 
the model is based.  
A stochastic process is a family of random 
variables which, in general, are related to 
each other and follow a joint probability 
distribution. It is denoted by:  
𝑌𝑌𝑡𝑡(𝛾𝛾), 𝑡𝑡 =  ⋯ , 𝑡𝑡 − 2, 𝑡𝑡 − 1 , 𝑡𝑡, 𝑡𝑡 +  1, 𝑡𝑡 

+  2,⋯ 
For each t = t0, we obtain Yt0(γ) representing 
each random process characterized by its 
distribution univariate probability. However, 
for each γ = γ0 we obtain a performing 
process; that is, a sample formed by the set 
of singular observations at each time t of 
each of the random variables forming the 
process:  

⋯ ,𝑌𝑌𝑡𝑡−1(𝛾𝛾0),𝑌𝑌𝑡𝑡(𝛾𝛾0),𝑌𝑌𝑡𝑡+1(𝛾𝛾0),⋯ 

Therefore, for 𝑡𝑡 = 1,2, . . . ,𝑇𝑇. Temporal 
series 𝑌𝑌1,𝑌𝑌1,⋯ ,𝑌𝑌𝑇𝑇 is an accomplishment of 
the stochastic process 𝑌𝑌𝑡𝑡(𝛾𝛾). 
 
4.2. Stationary Stochastic Processes  
 
The analysis of time series consists in using 
stochastic process theory to determine the 
processes that generated the time series 
under analysis, in order to characterize its 
behaviour and to be able to predict the future 
(Casimiro, 2009). Therefore, for the 
predictions to be consistent, it is required 
that the stochastic process is stable, that is, 
stationary.  
The stationarity of a stochastic process can 
be analysed through a distribution function 
(stationarity in the strict sense) or through its 
moments: mean, variance and covariance 
(second order stationarity or stationarity in 
covariance) (see details in Casimiro, 2009)).  
If we verify that the distribution function of 
the set of n random variables of the process 
Yt does not change for k periods lagged at 
time t, that means,  
 

𝐹𝐹[𝑌𝑌𝑡𝑡1,𝑌𝑌𝑡𝑡2,⋯ ,𝑌𝑌𝑡𝑡𝑡𝑡]  =
 𝐹𝐹[𝑌𝑌𝑡𝑡1+𝑘𝑘 ,𝑌𝑌𝑡𝑡2+𝑘𝑘,⋯ ,𝑌𝑌𝑡𝑡𝑡𝑡+𝑘𝑘],  

∀(t1,t2,...,tn), 
 

it is said that the stochastic process is strictly 
stationary.  
We consider the stationarity in covariance 
when the following three conditions are 
fulfilled:  
If all the process variables have:  
(1) The same mean, that is to say:  
 

𝐸𝐸(𝑌𝑌𝑡𝑡)  =  µ <  ∞,∀𝑡𝑡 
 

(2) The same finite variance:  
 

𝑉𝑉(𝑌𝑌𝑡𝑡)  =  𝐸𝐸[𝑌𝑌𝑡𝑡 − µ]2 =  𝜎𝜎𝑌𝑌2 < ∞,∀𝑡𝑡 
 

(3) The covariance between two variables 
does not depend on time t  
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𝑐𝑐𝑐𝑐𝑐𝑐(𝑌𝑌𝑡𝑡 ,𝑌𝑌𝑠𝑠)  =  𝐸𝐸[𝑌𝑌𝑡𝑡  − µ][𝑌𝑌𝑠𝑠 − µ]
=  𝛾𝛾|𝑡𝑡 − 𝑠𝑠|  =  𝑌𝑌𝑘𝑘
<  ∞,∀𝑡𝑡. 

 
4.3. White Noise Process 
 
The white noise 𝑎𝑎𝑡𝑡 is a simpler stochastic 
process, and corresponds to a sequence of 
random variables with zero mean, constant 
variance and null covariance, that is:  
 

𝐸𝐸(𝑎𝑎𝑡𝑡)  =  0, 
𝑉𝑉 (𝑎𝑎𝑡𝑡) =  𝜎𝜎2,∀𝑡𝑡  and, 

𝐶𝐶𝑐𝑐𝑐𝑐(𝑎𝑎𝑡𝑡 , 𝑎𝑎𝑠𝑠)  =  0,∀𝑡𝑡 ≠  𝑠𝑠. 
 

The main characteristic of a temporal series 
is the dependence of observations in the 
time, so the essence of the temporal series 
models is based on the modelling of this 
correlation structure that can predict the 
future pattern of the series in case. However, 
the previous properties presented show that 
the observations of a white noise process are 
not correlated; indicating that for this type of 
process there is no relevant pattern to be 
modelled. Nevertheless, the white noise 
process is very useful in the analysis of time 
series, since it is the basis of the construction 
of the ARIMA models.  
 
4.4. Processes AR (p)  
 
It is denominated an autoregressive process 
of order p, to the stochastic process 𝑌𝑌𝑡𝑡 from 
which we can to define a model that relates 
the current observation with its past until the 
delay t-p and a white noise term, that is:  
 
𝑌𝑌𝑡𝑡 =  𝜑𝜑1𝑌𝑌𝑡𝑡−1 + 𝜑𝜑2𝑌𝑌𝑡𝑡−2 + ⋯+  𝜑𝜑𝑝𝑝𝑌𝑌𝑡𝑡−𝑝𝑝 +  𝑎𝑎𝑡𝑡  

𝑎𝑎𝑡𝑡 ∼  𝑅𝑅𝑅𝑅(0,𝜎𝜎2) 𝑡𝑡 =  1,2,⋯ 
 
which is equivalent to:  
 
(1 − 𝜑𝜑1𝑅𝑅 +  𝜑𝜑2𝑅𝑅2  + ⋯+  𝜑𝜑𝑝𝑝𝑅𝑅𝑝𝑝)𝑌𝑌𝑡𝑡 = 𝑎𝑎𝑡𝑡   
 
where, 𝜑𝜑(𝑅𝑅)  =  (1 − 𝜑𝜑1𝑅𝑅 +  𝜑𝜑2𝑅𝑅2 +···
+ 𝜑𝜑𝑝𝑝𝑅𝑅𝑝𝑝) is the autoregressive polynomial 
and B is the delay operator, that is, 
 

𝑅𝑅𝑝𝑝𝑌𝑌𝑡𝑡  =  𝑌𝑌𝑡𝑡−𝑝𝑝 
 

The polynomial 𝜑𝜑(𝑅𝑅) is used to test the 
stationarity of the AR (p) process. An 
autoregressive process AR (p) is stationary if 
the autoregressive polynomial 𝜑𝜑𝑝𝑝(𝑅𝑅) has 
solutions outside of the unit circle, that is, 
the stationarity is checked by solving the 
following equation:  
 
𝜑𝜑(𝑅𝑅)  =  0 ⇒  (1 − 𝜑𝜑1𝑅𝑅 +  𝜑𝜑2𝑅𝑅2 + ⋯

+ 𝜑𝜑𝑝𝑝𝑅𝑅𝑝𝑝)  =  0 
 
Where B is the polynomial variable, and 
takes positive and greater than one value. 
 
4.5. Processes MA (q)  
 
The moving averages model of order q 
expresses the value of 𝑌𝑌𝑡𝑡 pursuant to the 
noise and their respective delays up to the q 
order, y is represented by:  
 
𝑌𝑌𝑡𝑡 = 𝑎𝑎𝑡𝑡 − 𝜃𝜃1𝑎𝑎𝑡𝑡−1 − 𝜃𝜃2𝑎𝑎𝑡𝑡−2 − ⋯− 𝜃𝜃𝑞𝑞𝑎𝑎𝑡𝑡−𝑞𝑞 , 

𝑎𝑎𝑡𝑡 ∼ 𝑅𝑅𝑅𝑅(0,𝜎𝜎2)  
 
in an equivalent way:  
 
𝑌𝑌𝑡𝑡 = (1 − 𝜃𝜃1𝑅𝑅 − 𝜃𝜃2𝑅𝑅2 −⋯− 𝜃𝜃𝑞𝑞𝑅𝑅𝑞𝑞)𝑎𝑎𝑡𝑡  

𝑎𝑎𝑡𝑡 ∼ 𝑅𝑅𝑅𝑅(0,𝜎𝜎2)  
 
where  
 
𝜃𝜃𝑞𝑞(𝑅𝑅)  =  (1 − 𝜃𝜃1𝑅𝑅 − 𝜃𝜃2𝑅𝑅2  −⋯− 𝜃𝜃𝑞𝑞𝑅𝑅𝑞𝑞) 

 
is the polynomial moving averages and  
 

𝑅𝑅𝑞𝑞𝑎𝑎𝑡𝑡 =  𝑎𝑎𝑡𝑡−𝑞𝑞. 
 
The MA(q) model is stationary if it satisfies 
the condition: ∑ θ𝑖𝑖2

𝑞𝑞
𝑖𝑖=1 <  ∞, and since the 

number of parameters 𝜃𝜃𝑖𝑖 is finite, that is: 
𝑖𝑖 =  1, . . . , 𝑞𝑞, then this condition is always 
fulfilled, so that it can be said that an MA (q) 
model is always stationary. 
A process with characteristics of both AR(p) 
and MA(q) is called autoregressive moving 
average, and is represented by ARMA (p,q). 
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The analytical expression of an ARMA (p, 
q) process  is given by:  
 

𝜑𝜑𝑝𝑝𝑌𝑌𝑡𝑡  =  𝜃𝜃𝑞𝑞𝑎𝑎𝑡𝑡  
𝑎𝑎𝑡𝑡 ∼  𝑅𝑅𝑅𝑅(0,𝜎𝜎2) 

 
where 𝜑𝜑𝑝𝑝 and 𝜃𝜃 𝑞𝑞 are defined in a similar 
way as in the previous cases. It is commonly 
assumed that ARMA processes are 
stationary. In every way, the stationarity of 
the process can be tested through the 𝜑𝜑𝑝𝑝(𝑅𝑅) 
in an analogous way as in the AR(p) model.  
The present research is oriented to non-
stationary processes. The biometric 
parameters (weight and length) mentioned 
above, besides being dependent on the time, 
they present a continuous evolution, which 
adds to the model the trend component.  
In this type of process, where in addition to 
the autoregressive and the moving average 
structure, also has a component trend that 
may be modelled by the polynomial 
𝛻𝛻d=(1−B)d of order d (d = root number of 
non-stationary units ) is called integrated, 
and is represented by: ARIMA (p, d, q).  
The order d indicates the number of 
differences necessary to achieve the 
stationary process mean. Therefore, if Yt is 
an integrated process of order d, the model 
(1 − 𝑅𝑅)𝑑𝑑𝑌𝑌𝑡𝑡  =  𝐴𝐴𝑅𝑅𝐴𝐴𝐴𝐴 (𝑝𝑝 − 𝑑𝑑, 𝑞𝑞) is 
stationary and invertible.  
In general, the ARIMA model (p, d, q) can 
be represented as: 
  

𝜑𝜑𝑝𝑝 𝛻𝛻𝑑𝑑𝑌𝑌𝑡𝑡  =  𝑘𝑘 +  𝜃𝜃𝑞𝑞𝑎𝑎𝑡𝑡 
𝑎𝑎𝑡𝑡 ∼  𝑅𝑅𝑅𝑅(0,𝜎𝜎2) 

 
where p is the order of the stationary 
autoregressive polynomial, d is the number 
of differences necessary to make it stationary 
(integration of the series), q is the order of 
the invertible moving average polynomial, 
and k is the constant of model.  
 
4.6. ARIMA model with transfer function  
 
As previously commented, this research 

aims at modelling the autocorrelation 
structure in the biometric parameters in order 
to predict the growth of oreochromis 
mossambicus. Associated with commercial 
interests, weight was taken as the main 
indicator of such growth (fattening), and on 
this parameter the ARIMA model is 
adjusted. However, considering the high 
correlation between weight and length, it is 
relevant to include this parameter in the 
study in order to increase the variability 
explained in the model and to improve 
predictions about the growth rate. To achieve 
this, a transfer function ARIMA model is 
required.  
According to Tsay (Tsay, 2005) the transfer 
function is a statistical model describing the 
dynamic relationship between a 𝑦𝑦 𝑡𝑡variable 
response and one or more explanatory 
variables 𝑥𝑥𝑡𝑡. On the other hand, Yaffee and 
McGee (Yaffee & McGee, 1999) considers 
that the transfer function is a functional 
relationship between a response series yt and 
an explanatory series xt in a dynamic 
system.  
In this work, the transfer function is applied 
to model the weight values of the tilapia 
through their past values and with the aid of 
the standard length values. Therefore, the 
length is used, in this case, as a variable that 
increases information in the model.  
Consider pt and lt the weight and standard 
length, respectively. The transfer function 
adjusted for these two variables is given by:  
 

𝑝𝑝𝑡𝑡 =  𝑘𝑘 +  𝑐𝑐(𝑅𝑅)𝑙𝑙𝑡𝑡  
+  𝑁𝑁𝑡𝑡                                        

 
where 𝑐𝑐(𝑅𝑅)  =  𝑐𝑐0  +  𝑐𝑐1𝑅𝑅 +  𝑐𝑐2𝑅𝑅2 +  ⋯ is 
the coefficient of the transfer function, B is 
the delay operator, that is 𝑅𝑅𝑚𝑚𝑙𝑙𝑡𝑡 =  𝑙𝑙𝑡𝑡−𝑚𝑚; and 
𝑁𝑁𝑡𝑡 is the model residual, which may be 
strongly correlated with 𝑙𝑙𝑡𝑡. 
Therefore, the transfer function consists of 
two components: 𝑐𝑐(𝑅𝑅) and 𝑁𝑁𝑡𝑡.  
As in the univariate case, these two 
components can be written as:  
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𝑐𝑐(𝑅𝑅)  = (𝑤𝑤(𝑅𝑅)/𝛿𝛿(𝑅𝑅))𝑅𝑅𝑏𝑏  
 
where B is a non-negative integer number,  
 

𝑤𝑤(𝑅𝑅) = 𝑤𝑤0 − 𝑤𝑤1𝑅𝑅 − 𝑤𝑤2𝑅𝑅2 − ⋯
−  𝑤𝑤𝑠𝑠𝑅𝑅𝑠𝑠  and 𝛿𝛿(𝑅𝑅)  
=  1 − 𝛿𝛿1𝑅𝑅 − 𝛿𝛿2𝑅𝑅2  −⋯
− 𝛿𝛿𝑟𝑟𝑅𝑅𝑟𝑟. 

 
On the other hand, 𝑁𝑁𝑡𝑡 can be modelled as:  
 

𝜑𝜑(𝑅𝑅)𝑁𝑁𝑡𝑡  =  𝜃𝜃(𝑅𝑅)𝑎𝑎𝑡𝑡 
 

which corresponds to an ARIMA(p,q) 
model, where 𝜑𝜑(𝑅𝑅) = 1 − 𝜑𝜑1𝑅𝑅 − 𝜑𝜑2𝑅𝑅2 −
⋯− 𝜑𝜑𝑝𝑝𝑅𝑅𝑝𝑝, 𝜃𝜃(𝑅𝑅)  = 1 − 𝜃𝜃1𝑅𝑅 − 𝜃𝜃2𝑅𝑅2 −···
−𝜃𝜃𝑞𝑞𝑅𝑅𝑞𝑞 and 𝑎𝑎𝑡𝑡 ∼ 𝑁𝑁(0,𝜎𝜎2). Assuming 
stationary and invertibility of the model, 
𝑁𝑁𝑡𝑡  can be presented as:  
 

𝑁𝑁𝑡𝑡  = (𝜃𝜃(𝑅𝑅)/𝜑𝜑(𝑅𝑅))𝑎𝑎𝑡𝑡  
 
Then:  
 

𝑝𝑝𝑡𝑡  =  𝑘𝑘 + (𝑤𝑤(𝑅𝑅)/𝛿𝛿(𝑅𝑅))𝑅𝑅𝑏𝑏𝑙𝑙𝑡𝑡
+ (𝜃𝜃(𝑅𝑅)/𝜑𝜑(𝑅𝑅))𝑎𝑎𝑡𝑡 
 

The fit of the transfer function will follow 
the modelling strategy of Box and Jenkins 
(Box & Jenkins, 1976), and in this case we 
will use the following steps:  
(1) fit an ARMA model for the time series 
length lt; 
(2) Use the same filter, that is, the same 
polynomials of the lt model and fit an 
ARMA model for pt;  
(3) Let at denote the white noise from the 
fitted model in step (1) and a∗t the 
corresponding noise obtained in (2) (which 
is not necessarily a white noise), determining 
a function of cross-correlation between  at 
and a∗t; 
(4) Through the graph of the correlation 
function obtained in (3), identify the orders 
b, r, s of the transfer function;  
(5) The first estimation of the transfer 
function model is to determine the 

coefficients v(B) with the orders r, s, b 
estimated in (4) and the polynomials p and q 
of the fitted ARMA model for 𝑁𝑁𝑡𝑡, identified 
from the model of  𝑝𝑝𝑡𝑡 . 
 
5. Results and Discussion  
 
In this section there are presented the results 
of the transfer function ARIMA model 
adjusted to the biometric parameters 
recorded in 21 weeks in the tilapia tanks at 
the company Aquapesca de Moçambique.  
Figure 1 shows the evolution of weight 
(figure 1 (a)) and standard length (figure 1 
(b)) over the considered cultivation period. 
The trend is obvious component in the 
parameters whereby a regular difference d = 
1 in both cases is considered, and the 
differences of weight and standard length 
values (the difference between value of an 
instant and the first previous time) are 
presented in Figure 1 (c) and Figure 1 (d), 
respectively. 
The oscillation of the differences obtained 
from the two parameters indicates, on one 
hand, that the growth of tilapia is not linear, 
and on the other hand, that this aspect may 
be associated with the randomness which is 
subject to sampling (it may happen that in a 
given biometry, individuals relatively 
smaller than those of the previous biometry 
are observed). However, Figure 1 show the 
original data of the parameters and their 
respective differences, where it can be 
observed that the stationarity was obtained in 
the mean.  
The graphs in Figure 2 show successive 
decreases of simple correlations (Figure 2 (a) 
and (c)) and only a significant partial 
correlation (Figure 2 (b) and (d)), indicating 
that both parameters come from an 
autoregressive process of order 1 (AR (1)).  
Following the modelling strategy of Box and 
Jenkins presented in section 3, an ARIMA 
(1,1,0) model was adjusted for standard 
length lt, and its parameters were used to fit 
the ARIMA model (1,1,0) * for weight pt. 
Then, it was regarded as a cross-correlation 
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function between residues at and a∗t resulting 
from the two models (Figure 3) where it can 
be observed that the most important cross-
correlation (significant) is Lag=0, indicating 

that the correlation between weight and 
standard length is instantaneous 
(observations of the same instant).  

 
Figure 1. Representation of the biometric parameters and their respective differences 

 
In the transfer function: 

• b indicates the first significant Lag, 
and represents the first delay of the 
input variable (in this case the 
standard length) to enter in the 
model;  

• s represents the number of 
increasing Lags after b;  

• r indicates the number of 
exponential falls in the increasing 
Lags.  

Therefore, Figure 3 indicates that b = 0, s = 1 
and r = 0.  
On the other hand, the simple and partial 
correlation functions, and the regular 
difference considered, suggest an ARIMA 
model (1,1,0) for the weight parameter pt 
(model fitted for weight without resorting to 

pre-whitining method). Hence, a first 
estimation of the analytic expression of the 
transfer function for pt and lt is:  
 
𝑝𝑝𝑡𝑡 = (𝑤𝑤0 − 𝑤𝑤1𝑅𝑅)𝑙𝑙𝑡𝑡  + (1/(1 − 𝜑𝜑1𝑅𝑅)) 𝑎𝑎𝑡𝑡 

 
that is  
 
𝑝𝑝𝑡𝑡 = 𝜑𝜑1𝑝𝑝𝑡𝑡−1 + 𝑤𝑤0𝑙𝑙𝑡𝑡 − (𝑤𝑤1 + 𝑤𝑤0𝜑𝜑1)𝑙𝑙𝑡𝑡−1

+ 𝑤𝑤1𝜑𝜑1𝑙𝑙𝑡𝑡−2 𝑎𝑎𝑡𝑡 
 

where 𝑎𝑎𝑡𝑡 ∼ 𝑅𝑅𝑅𝑅(0,𝜎𝜎2). This model indicates 
that the weight value of the tilapia at a given 
moment is influenced by the weight of the 
previous time, and the values of the length of 
the same instant and of the two previous 
times.  
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Figure 2. Simple and partial correlation function for the biometric parameters 
 

 
Figure 3. Cross-correlations between at and a∗t 

 
The estimated values of the coefficients are: 
𝜑𝜑 1  =  −0.50,𝑤𝑤0  =  1 7.08 and 𝑤𝑤1  =
 −0.40. And the final model is defined as 
follows:  
 
𝑝𝑝 𝑡𝑡 = −0,50𝑝𝑝𝑡𝑡−1 + 17,08𝑙𝑙𝑡𝑡 + 8,94𝑙𝑙𝑡𝑡−1

+ 0,2𝑙𝑙𝑡𝑡−2  +  𝑎𝑎𝑡𝑡  

The future values of the weight can be 
estimated as follows:  
 
𝑝𝑝𝑡𝑡+ℎ = −0,50𝑝𝑝𝑡𝑡+ℎ − 1 + 17,08𝑙𝑙𝑡𝑡+ℎ

+ 8,94𝑙𝑙𝑡𝑡+ℎ−1 + 0,2𝑙𝑙𝑡𝑡+ℎ−2 
 
where h is a positive integer number.  
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Figure 4 shows that there is not a large 
discrepancy between observed and predicted 
weight values using the fitted transfer 
function ARIMA model, indicating a good 
fit of the model (AIC = 112.23).  
The residuals of the fitted model follow a 

normal distribution (see figure 5) from the 
Ljung-Box test (W = 18.437, p-value = 
0.362) found that there is no significant 
evidence to reject the hypothesis that the 
residues are independent and identically 
distributed.  

 

 
Figure 4. Adjustment of the transfer function ARIMA model for weight of tilapia 

 

 
Figure 5. Model Diagnosis 

 
With these findings, the fitted transfer 
function ARIMA model can be used to 
predict the weight of tilapia in the next 
weeks of cultivation. Such prediction 
depends on the recorded historical values of 
weight and length.  
The use of this model may help in the 
monitoring process, with regard to the 

growth rate of tilapia, and with the biometric 
parameters considered, it will be possible to 
carry out forecasts of the level of growth, 
from which the expected yield can be 
evaluated in the crop, giving possibilities to 
make early changes in the process in case of 
anomalies.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 10 15 20 
 

Time (weeks) (a) 
 

observed 
  adjusted 

W
eig

ht 
(g

) 

12
0 

14
0 

Histogram of res Normal Q−Q Plot 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−20 −10 0 10 20 −2 −1 0 1 2 
 

res Theoretical Quantiles 

 

 

  

 

 


 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 
 
 

  

 

 
 

 

F
re

q
u

e
n

c
y

 

0
 

5
 

1
0

 
1

5
 

2
0

 
2

5
 

S
a

m
p

le
 Q

u
a

n
ti
le

s 

−
1

0
 

0
 

1
0

 
2

0
 



 

833 

Table 1 shows the predictions of the next ten 
(10) weeks of culture (with their respective 
confidence intervals of 80 and 90%). The 
model indicates that if the cultivation period 
was extended for a further 10 weeks, that is, 
up to week 31, tilapias with an average 
weight of approximately 250g would be 

obtained (corresponding to 36.6% of the 
average weight at week 21) with a weekly 
growth rate of 6.9g end of the current 
section. It is recommended that footnotes be 
avoided. Instead, try to integrate the footnote 
information into the text. 

 
Table 1. Estimated weight values for the next 10 weeks (LL=Lower limit, UL=Upper limit) 

 IC80 % IC95 % 
Time(weeks) Weight LL UL LL UL 

22 188,2 179,3 197,2 174,6 201,9 
23 195,1 185,9 204,2 181,1 209,1 
24 201,9 192,3 211,5 187,2 216,6 
25 208,8 198,4 219,2 192,8 224,7 
26 215,6 204,1 227,1 198,0 233,2 
27 222,4 209,5 235,4 202,6 242,3 
28 229,3 214,6 244,0 206,8 251,8 
29 236,1 219,4 252,9 210,5 261,7 
30 243,0 224,0 262,0 213,9 272,0 
31 249,8 228,4 271,2 217,1 282,6 

 
6. Conclusions 
 
The profitability of fish farming activity in 
aquaculture is measured by the levels of 
fattening obtained at the end of the crop, 
which is interpreted in monetary values. 
Therefore, several strategies are used in 
aquaculture aimed at improving such yield. 
However, some non-controllable factors may 
influence in a way that hinders the 
expectation of the final crop result. In this 
aspect, the transfer function ARIMA model 
was applied in this work in order to improve 
the prediction of tilapia growth levels 
throughout its cultivation process.  
Unlike the methods commonly used in 
aquaculture to relate biometric parameters, 
such as the weight-length growth curves and 
linear regression models, the ARIMA model 
with transfer function considers the dynamic 
relationship between biometric parameters, 
as shown by the previous results presented. 
This method allows that both instantaneous 
relations and the effect of the relationships 
between lagged values from the parameters 
are included in the model. This strategy 
increases the explained variability of the 

model compared to the usual methods 
mentioned, this aspect can be justified by the 
good result of adjustment capacity obtained 
(97.8%). 
Therefore, the ARIMA model with transfer 
function can be considered a relevant 
methodology to control and predict the 
growth of tilapia. This model may make the 
activity more controllable and accessible to 
implement strategies for improving the final 
product.  
In future investigations, the model can be 
extended considering the environmental 
parameters in the transfer function model as 
regressors to quantify the impact of each 
environmental parameter on the growth of 
the cultivated species, as well as 
improvements in the predictive capacity of 
the model. 
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