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APPLICATION OF MULTIVARIATE 

CONTROL CHART FOR IMPROVEMENT IN 

QUALITY OF HOTMETAL - A CASE STUDY 

 
Abstract: Quality of hot metal produced in a blast furnace is 

affected by multiple variables. Classical Statistical Process 

Control (SPC) methodologies are non-optimal to monitor and 

control these multiple variables as the effect of one variable 
can be confounded with effects of other correlated variables. 

Further, Univariate control charts are difficult to manage and 

analyze because of the large numbers of control charts of each 

process variable. An alternative approach is to construct a 

single multivariate T2 control chart that minimizes the 

occurrence of false process alarms. Multivariate control 

charts monitor the relationship between the variables and 

identifies real process changes which are not detectable with 

Univariate charts. This paper studies the application of 

Multivariate Statistical Process Control (MSPC) charts to 

monitor hot metal production process in a steel industry. T2 

diagnosis with Principal component analysis (PCA) is applied 

to analyze the critical process variables. 

Keywords: Control Chart, Regression Analysis, Statistical 

Process Control, Univariate, Multivariate, Principal 

Component Analysis, Correlation 

 
 

1. Introduction1
 

 

Today iron and steel products are highly 

valued and they are vital to Nation’s 

economy & indispensable in many product 
applications. The Steel along with Power 

form back bone of the national development. 

In general, steel industry is envisaged to 

continue to play a larger role in all spheres of 

development in India considering low per 

capita consumption of steel and in particular, 

in infrastructure development of the nation. 
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In the recent times, the steel industry has 

seen tough competition in domestic as well 

as global market with reference to quality 

and cost. While no stone is being left 

unturned to achieve the highest grades of 

qualities in our steel production, we are 

looking for all avenues of quality controlling 

measures. Unless the plant competes in 

quality aspect, it will be difficult to remain in 

the race of domestic as well as global 
market. The purpose of the paper is to 

provide an insightful research and 

examination of the methodology and 

implementation of MSPC charts in the 

process of hot metal production in a Blast 

furnace. 
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2. Literature review 
 

2.1 Statistical process control 

 

In large and complex manufacturing 

systems, statistical methods are used to 

monitor whether or not the processes remain 

in control. Control charts are widely used as 

process monitoring tools, primarily to detect 

changes in the process mean or in its 

standard deviation, which can indicate 

deterioration in quality. Statistical Process 

Control has become an important approach 

for process industries since 1920s. The aim 
of SPC is to achieve higher product quality 

and lower production cost by minimizing the 

defects. In general, statistical process control 

techniques help us to monitor the production 

process and to detect abnormal process 

behavior due to special causes. Once the 

special causes for abnormal process behavior 

is detected and further eliminated, the 

process can be improved, so as the quality of 

the product. To monitor the production 

process W. A. Shewhart developed the 
statistical process control chart (Shewhart, 

1931). This is also known as Univariate 

Statistical Process Control (USPC) chart. 

Quality is generally determined by several 

quality characteristics which may be 

correlated. Each of these quality 
characteristics must satisfy certain 

specifications. The quality of the product 

depends on the combined effect of many 

input variables rather than their individual 

values. However, USPC can only monitor 

single process variable at a time. The signal 

interpretation in this control chart is 

straightforward as it ignores the relationship 

to the other variables within the process. The 

standard assumptions in SPC are that the 

observed process values are normally, 
independently and identically distributed 

with fixed mean and standard deviation 

when the process is in control. Due to the 

dynamic behavior, these assumptions are not 

always valid. 

In reality, manufacturing systems are often 

influenced by many known or unknown 

disturbances (Box and Kramer, 1992). The 

modern production process is integrated and 

has become more complex, inevitably that 

the number of process variables need to be 

monitored has increased dramatically. 

Monitoring the process variables 
individually ignores the possible correlation 

or interaction between them. This can lead to 

missed out-of-control signals. When the 

number of quality characteristics are more, 

the application of USPC may be 

inappropriate.  

To monitor such situations Multivariate 

Statistical Process Control charts namely T2 

charts, T2 Generalized Variance charts, 

Multivariate EWMA charts etc., are 

powerful tools. This method considers the 

correlation between variables and monitors 

more than one variable simultaneously. 

MSPC chart takes this correlation of process 

variables into account in monitoring by the 

mean vector or covariance matrix. By 

monitoring the relationship between 
variables, MSPC reflects the process 

situation more precisely and is able to detect 

the out-of-control situation. Early work on 

multivariate statistical control procedures 

was performed in the 1930's and in the 

1940's (Hotelling, 1947). 

 

2.2 Multivariate statistical process control 

charts 

 

It is a fact of life that most data are naturally 

multivariate. Quality control problems arise 

when processes or products with two or 

more related quality variables are to be 

monitored or controlled. When these 

variables are correlated, a more appropriate 
approach would be required to monitor them 

simultaneously. It is very likely that these 

variables will be correlated due to the large 

number of variables collected at a given 

time. Consequently, multivariate statistical 

methods, which provide simultaneous 

scrutiny of several variables, are needed for 

monitoring and diagnosis purposes in 

modern manufacturing systems. A more 



 

625 

appropriate method of detecting and 

isolating process faults is to utilize 

Multivariate Statistical Process Control 

(MSPC) approaches 

Hotelling(1947) introduced a statistic which 

uniquely lends itself to plotting multivariate 

observations. This statistic, appropriately 

named Hotelling's T2, is a scalar that 

combines information from the dispersion 

and mean of several variables. Due to the 

fact that computations are laborious and 

fairly complex and require some knowledge 

of matrix algebra, acceptance of multivariate 
control charts by industry was slow and 

hesitant. 

As in the Univariate case, when data are 

grouped, the T2 chart can be paired with a 

chart that displays a measure of variability 

within the subgroups for all the analyzed 
characteristics. The combined T2 and   

dispersion charts are thus a multivariate 

counterpart of the Univariate and S (or and 

R) charts. 

Kourti and MacGregor (1996) monitored 
both process and product through 

multivariate statistical process control. 

Woodall and Montgomery (1999) 

emphasized the need for much more research 

in this area since most of the processes 

involve a large number of variables that are 

correlated. Mason and Young (2001) 

implemented multivariate statistical process 

control using Hotelling’s T2 statistic. Mason 

et al. (2003) interpreted the patterns of 

process behavior occurring in Shewhart 

control charts as indicators of extraneous 
sources of process variation. The authors 

concluded that the process will be improved 

if the cause of systematic pattern in the 

process are diagnosed and further 

eliminated.  

Kourti (2005) overviewed the latest 

developments in multivariate statistical 

process control (MSPC) and its application 

for fault detection and isolation (FDI) in 

industrial processes and elaborated the 

methodology and describes how it is 

transferred to the industrial environment. 

Kim and Reynold (2005) proposed 

Multivariate monitoring using an 

multivariate exponentially weighted moving 

average (MEWMA) control chart with 

unequal sample sizes.  

Panyaping (2006) considered an application 

of the multivariate analysis technique as a 

management tool to characterize the 

relationships between wastewater generation 

and production conditions in the 

manufacture of textile products of Textile 

Industry in Samutprakarn Province. Sharaf 

El-Din et al. (2006) made a study on the 
application of Univariate and multivariate 

control charts for quality improvement in 

steelmaking. Huwanget al. (2007) 

considered individual observations for 

Monitoring Multivariate Process Variability.  

Changand Zhang (2007) tried a very 

complicated problem of monitoring variance 

shift in multivariate time series and proposed 

multivariate EWMA charts called MEWMV 

charts. 

Li et al. (2008) considered Causation based 

T2 decomposition for Multivariate Process 

Monitoring and Diagnosis. Zhang and Chang 

(2008) proposed a new single control chart 

which integrates the exponentially weighted 

moving average (EWMA) procedure with 

the generalized likelihood ratio (GLR) test 
for jointly monitoring both the multivariate 

process mean and variability. He et al. 

(2008) proposed self-starting control charts 

to reduce the bias of the Shewhart chart for 

the case with unknown process mean and 

variance. 

Haridy and Wu (2009) discussed in their 

paper about the characterization of the 

dynamic behavior of the manufacturing 

process with the appropriate monitoring 

procedures; and the development of adaptive 

monitoring procedures for the processes with 

a comparison between Univariate and 

multivariate control charts.  Zou and Qiu 

(2009) proposed a new technique LASSO-

based multivariate test statistic, then 

integrated with multivariate EWMA charting 
scheme for process monitoring. This 
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approach balances protection against various 

shift levels and shift directions, and hence 

provides an effective tool for multivariate 

SPC applications. 

Zhang et al. (2010) proposed a new 

multivariate charting scheme for 

simultaneously monitoring the process mean 

vector and covariance matrix of a 

multivariate normal process by using a 

single chart. Waterhouse et al. (2010) 

considers the implementation and 

performance of the T2, multivariate 

exponentially weighted moving average 
(MEWMA) and multivariate cumulative sum 

(MCUSUM) charts in light of the challenges 

faced in clinical settings. Sinha et al. (2010) 

proposed and explored a multivariate logistic 

regression model for analyzing multiple 

binary outcomes with incomplete covariate 

data where auxiliary information is 

available. Shao et al. (2011) proposed the 

combination of statistical process control 

with engineering process control with 

binomial distribution concept to effectively 
determine the starting time of a process fault 

and to avoid misinterpretation of signals.  

Lee and Liu (2012) proposed three new 

methods for utilizing joint information 

among response variables. These methods 

provide sparse estimators of the conditional 
inverse covariance matrix of the response 

vector, given explanatory variables as well 

as sparse estimators of regression 

parameters. They demonstrated with 

numerical examples that the proposed 

methods perform competitively in terms of 

prediction, variable selection, as well as 

inverse covariance matrix estimation. For 

short production runs, designing on-line SPC 

inspection activities can be difficult because 

of the lack of previous knowledge about the 
distributional properties of the quality 

characteristic to be monitored. To monitor 

the process mean in a short run, Celanoet al. 

(2012) proposed the CUSUM t control chart 

and its economic design to overcome the 

problem of the preliminary estimation of the 

distribution parameters. Jaupiet al. (2013) 

statistical process control methods for 

monitoring short-run processes with 

multivariate measurements are considered 

and proposed techniques in general, and the 

influence functions may be used to build up 

to either nominal values or estimates & 

illustrated with real datasets, from a flexible 

job shop manufacturing system producing 
spare parts for classical cars. 

The MSPC diagnosis is designed to interpret 

the result of MSPC. Because the MSPC only 

signals the occurrence of an out-of-control 

event; it does not provide further information 

about what are the problematic variable(s) 
and its contribution. Mason et al. (1997) 

discussed the problem of interpretation of 

signal in multivariate control charts. They 

suggested a procedure for decomposing the 

T2 static into orthogonal component, which 

aids the interpretation effort. They also 

recommended a procedure for faster 

sequential computation scheme for 

decomposition. Principal component 

analysis is one of the techniques to analyze 

further. 
 

2.3 Principal component analysis 
 

Principal component analysis (PCA) is a 

classical data analysis technique that finds 

linear transformations of data that retain the 

maximal amount of variance. PCA is a 

technique for taking high-dimensional data, 

and using the dependencies between the 

variables to represent it in a more tractable, 

lower-dimensional form, without losing 

information. While the Process Variables 
may be correlated with one another, the 

Principal Components are defined such that 

they are orthogonal, or independent of one 

another, which is necessary for the analysis 

(MacGregoret al., 1994). PCA seeks the 

linear combinations of the original variables 

such that the derived variables capture 

maximal variance. PCA can be done via the 

singular value decomposition of the data 

matrix. Contribution Charts are available for 

determining the contributions of the process 
variables to either the Principal Component 

(Score Contributions) or the Squared 
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Prediction Error (Error Contributions) for a 

given sample. This is particularly useful for 

determining the Process Variable that is 

responsible for process shifts.  

Marengo et al. (2003) incorporated principal 

components analysis in multivariate control 

charts to monitor an industrial process. PCA 

is formulated within a maximum-likelihood 

framework, based on a specific form of 

Gaussian latent variable model and discussed 

the advantages of this model in the context 

of clustering, density modelling and local 

dimensionality reduction, and demonstrated 
its application to image compression and 

handwritten digit recognition (Tipping and 

Bishop, 2009). 

Bersimiset et al. (2007) discussed 

elaborately about the basic procedures for 

the implementation of multivariate statistical 
process control via control charting. 

Furthermore, they reviewed multivariate 

extensions for all kinds of Univariate control 

charts, such as multivariate Shewhart type 

control charts, multivariate CUSUM control 

charts and multivariate EWMA control 

charts. They also reviewed unique 

procedures for the construction of 

multivariate control charts, based on 

multivariate statistical techniques such as 

principal components analysis (PCA) and 
partial least squares (PLS). 

D’ Aspremontet et al. (2008) presented a 

new convex relaxation of sparse principal 

component analysis, and derived tractable 

sufficient conditions for optimality in 

machine learning and engineering 
applications. Mohamad-Saleh and Hoyle 

(2008) applied PCA technique for 

elimination of correlated data in the raw 

Electrical Capacitance Tomography (ECT) 

for oil fraction estimation from gas-oil flows. 

Sutherland and Parente (2009) proposed a 

modeling approach based on PCA and tested 
a priori using direct numerical simulation 

data. They outlined a methodology for 

constructing a reduced model for the 

thermochemical state from high-fidelity data 

with particular focus on the ability to 

parameterize source terms appearing in the 

transport equations for the principal 

components.  

Alexandru-Ionutet et al. (2012) attempted to 

introduce a methodology based on using 

PCA in conjunction with Geographical 

Information Systems (GIS) modeling to 

assess the level of development within the 

territorial subunits of a given region in 

Romania, with different sizes, tested the 

hypothesis according to which the level of 

development cannot be accurately described 

by variables looking at a single aspect (e.g., 
economic, social, cultural or environmental).  

Zhang et al. (2010) proposed a spatially 

adaptive efficient image denoising scheme 

by using principal component analysis with 

local pixel grouping to improve quality of 

the image. 

Yap et al. (2013) investigated the application 

of principal component analysis in the 

selection of financial ratios that are 

significant and representative for two 

industry sectors (i.e. consumer products and 
the trading and services sectors) in Malaysia. 

There is a limited research in monitoring of 

complex processes in process industries 

through Multivariate statistical process 

control. Hence in this study, a real case from 

a steel-making industry is considered and 
multivariate statistical process control is 

adopted to identify the correlation between 

multiple variables and monitoring of these 

variables. PCA technique is also adopted to 

analyze the problematic variables. 

 

3. Methodology 
 

To monitor the process, the methodology of 

T2 generalized variance control chart is 

presented. 

 

3.1 Principal component analysis 
 

The practitioners should know what input 

variables need to be stable in order to 

achieve stable output, and then these 

variables are rightly monitored. The critical 
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variable of the process may be identified by 

regression analysis. When the number of 

monitored variables is only 1 (N=1), then it 

is suggested to use USPC control charts 

more than 1 (N>=2), then it needs to be 

examined whether these variables correlate 

with each other. Correlation coefficient can 
be used as a criterion to decide the strength 

of the correlation between variables. 

 

3.2 Control limits construction 
 

It is important to purge the preliminary data 

to obtain an in-control data. The data 

purging includes identifying and removing 

outliers and/or substitute missing data with 

an estimate. This in-control data plus / minus 

three sigma is established as a norm to 

monitor the future observations and to see 
whether it significantly deviates away from 

the norm. The out-of-control observations 

were removed to monitor for future 

observations. 

 

3.3 Monitoring of future observations 

 

A period of future observation with specific 

number of observations will be analyzed 

with T2 generalized control chart and see if 

any observation is out-of-control. The 
Hotelling’sT2 generalized statistic is 

calculated for each new observation based 

on the mean and the covariance matrix 

obtained from the in-control data set. The 

control chart signals the out-of-control 

situation during the future observations. But 

it is not known which variable or set of 

variables is responsible for it. MSPC 

diagnosis is useful to identify those 

variables. 

 

3.4 Diagnosis of critical variables 

 

An out-of-control situation occurs while 

using USPC control charts, then the 

responsible variable(s) will reveal easily. 

While using T2 control chart, the diagnosis 

of responsible variable(s) of an out-of-

control situation will require more analysis. 

The contribution of each variable to the out-

of-control observation can be determined 

using Principal Component Analysis. 

 

4. Case Study 
 

The production of hot metal is one of the 

most important and critical processes in steel 

making process. The blast furnace is the first 

step in producing “Hot Metal” from iron 

oxides subsequently sent to produce “Steel” 

at Steel Melt Shop. The first blast furnaces 

appeared in the 14th Century and produced 

one ton per day. Blast furnace equipment is 
in continuous evolution and modern, giant 

furnaces can produce 13,000 tons of hot 

metal per day. Even though equipment is 

improved and higher production rates can be 

achieved, the processes inside the blast 

furnace remain the same. 

The purpose of a blast furnace is to 

chemically reduce and physically convert 

iron oxides into liquid iron called “hot 

metal”. The blast furnace is a huge, steel 

stack lined with refractory brick, where iron 

ore, coke and limestone are dumped through 

the top, and preheated air is blown through 

the bottom. The hot air that was blown into 

the bottom of the furnace ascends to the top 

after going through numerous chemical 
reactions. The raw materials require 6 to 8 

hours to descend to the bottom of the furnace 

where they become the final product of 

liquid slag and hot metal and drained from 

the respective tap holes at regular intervals. 

The inputs like sinter, coke are pre-processed 

before using in Blast Furnace. The hot air 

that was blown through the bottom of the 

furnace ascends to the top after going 

through numerous chemical reactions. This 

hot reducing gas travels up to the top of the 

furnace passing through the descending 

layers of ore and coke. Thus raw materials 

are heated up as they descend down through 

the furnace. When the burden material 

reaches temperatures over 1100 °C it starts 
to soften and completely melts at 1450 °C. 

This region of the furnace where softening 



 

629 

and melting occurs is called the cohesive 

zone. The main chemical processes in a blast 

furnace are the combustion of the fuel and 

the reduction of iron, Sulphur, Silicon, 

Manganese, and other elements. Coke is 

consumed in reduction process along with 

the fuel blown in at the tuyeres, is burned. 
Gases with temperatures of 1600°-2300°C 

and containing 35–45 percent CO, 1–12 

percent H2, and 45–65 percent N2 rise in the 

furnace and heat the descending charge, 

during which process the CO and H2 are 

partially oxidized to CO2 and H2O. As a 

result, hot metal is produced in liquid form, 

reach the hearth where molten metal settles 

down at the bottom and slag floats on top 
and hot metal drained from the furnace. 

 

Figure 1. Process flow diagram of Hot Metal process in Blast Furnace 

 

The process data is collected for 46 days and 

total of 370 observations were analyzed. The 

various inputs for this process are Blast 

Volume (m3/min), Blast Pressure (Kg/cm2), 

Blast Temperature (0C), Steam (t/hr.), 
Oxygen Enrichment(%), Oxygen 

Consumption (M3/hr.), Ash, Moisture, 

Volatile Material, Fe(%), FeO(%), SiO2(%), 

Al2O3(%), CaO(%), MgO(%), Mn(% ), SiO, 

Sulphur(S), Phosphorus(P), Manganese(Mn), 

Silica(Si), MnO(%) etc., 

The hot metal with lower silicon and sulphur 

contents is required for the production of 

quality Steel at Steel Melt Shop. For the 

production of quality hot metal, it is essential 

to identify and optimize raw materials 

quality, Blast Furnace operating 

conditions.To reduce abnormality of steel 

making at Steel Melt Shop (SMS), Blast 

Furnace is supposed to supply the hot metal 

in the following composition: 

Silicon (Si)  = 0.3 - 0.6% 

Manganese (Mn)  = 0.25% max 

Phosphorous (P)   = 0.15% max 

Sulphur (S)  = 0.04% max 

 

5. Results and discussion 
 

5.1 Process investigation and 

identification of critical process variables 

 

Generally, not all quality attributes and 

process variables are equally important. 

Some of them may be very important 

(critical) for quality of the product 
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performance and some of them may be less 

important. Monitoring a large amount of 

variables is not efficient. Only the critical 

quality characteristics should be selected and 

monitored. The practitioners should know 

what input variables need to be kept stable in 

order to achieve stable output, and then these 
variables are appropriately monitored. The 

critical process variable of the process may 

be identified by Regression Analysis. The 

Regression analysis tool performs linear 

regression analysis by using the "least 

squares" method to fit a line through a set of 

observations. You can analyze how a single 

dependent variable is affected by the values 

of one or more independent variables. 

Regression analysis is a technique for 

estimating the relationships among variables 

in process and to predict a dependent 
variable(s) from a number of input variables. 

Even if the variation in input variables were 

known, the exact reason was difficult to 

identify due to complexities in Blast Furnace 

Process. In order to understand the 
relationship between the input and output 

variables in the outgoing hot metal, the data 

is analyzed using regression analysis. In the 

analysis, each output composition is studied 

individually first to identify the process 

variables that would give the required 

composition of that output. Then, all the 

critical output variables are studied to find 

the process settings that would yield the 

desired compositions of all the constituents. 

Accordingly regression analysis was 

performed with the help of MINI tab 

software based on output quality of hot metal 

and Blast Volume (m3/min), Blast Pressure 

(Kg/cm2), Blast Temperature (0C), Steam 

(t/hr.), Oxygen Enrichment and Oxygen 

Consumption (m3/hr.), SiO2 (%) and CaO 
(%) are identified as critical process 

variables (p value < 0.05) to find out 

dependency and relationship between them, 

which may influence the quality of hot 

metal. 

It is also necessary to examine the 
dependency between these variables. 

Coefficient of correlation between variables 

is a good indicator to know the extent of 

relation among the variables. The 

correlations among the process variables are 

generated with the help of MINI tab, 

statistical software. Table 1 shows the 

correlation among the process variables 

generated from the data. 

Table 1. Revealed characteristics and the three models of innovation 

 
Blast 

Pressure 

Blast 

Volume 

Blast 

Temperature 

Oxygen 

Enrichmen

t 

Oxygen 

Consumptio

n 

Steam SiO2 CaO 

Blast 

Pressure 
1.000 

0.981 
(0.00) 

0.506 
0.000 

0.441 
(0.00) 

0.462 
(0.00) 

0.630 
(0.00) 

-0.043 
(0.407) 

-0.259 
(0.00) 

Blast 

Volume 
 1.000 

0.322 
(0.00) 

0.484 
(0.00) 

0.505 
(0.00) 

0.626 
(0.00) 

-0.024 
(0.639) 

-0.245 
(0.00) 

Blast 

Temperature   1.000 
0.279 
(0.00) 

0.295 
(0.00) 

0.322 
(0.00) 

0.183 
(0.00) 

0.405 
(0.00) 

Oxygen 

Enrichment 
   1.000 

0.991 
(0.00) 

0.587 
(0.00) 

0.039 
(0.454) 

0.405 
(0.00) 

Oxygen 

Consumptio

n 
    1.000 

0.608 
(0.00) 

0.052 
(0.321) 

-0.360 
(0.00) 

Steam      1.000 
-0.140 
(0.007) 

-0.144 
(0.005) 

SiO2       1.000 
0.298 
(0.00) 

CaO        1.000 

Note: The values shown in the brackets indicate ‘p’ values 
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From the Table 1, it is observed that there is 

a strong correlation between Blast Pressure 

and Blast Volume. There is a moderate 

positive correlation with Blast Temperature, 

Oxygen Enrichment, Oxygen Consumption 

& steam and weak negative correlation with 

CaO. Blast Volume shows moderate positive 
correlation with Blast Temperature, Oxygen 

Enrichment, Oxygen Consumption & Steam 

and weak negative correlation with CaO. 

Blast Temperature shows moderate positive 

correlation with Oxygen Enrichment, 

Oxygen Consumption & Steam and weak 

negative correlation with CaO. Oxygen 

Enrichment shows strong positive 

correlation with Oxygen Consumption and 

moderately with steam and CaO. Oxygen 

Consumption shows moderate positive 

correlation with steam, weak correlation 
with SiO2 and negative correlation with 

CaO. Steam shows negative correlation with 

SiO2 and CaO. SiO2 has moderate 

correlation with CaO. Since the p-values are 

smaller than 0.01 indicates that there is 

sufficient evidence that the correlations are 

significant at 1% level. 

 

 

 

5.2 Control limit construction 

 

A set of data containing observations on 370 

samples were analyzed using X  chart with 

customary plus / minus three sigma control 

limits to identify the problematic 

observations. The individual control charts 

for the critical process variables are drawn 

and shown (Figure 2 to Figure 9). 

X Charts of Blast Pressure and Blast Volume 

are shown in Fig.2 and Fig.3 respectively. 

From the figures it is observed that the nine 

observations (354, 355, 356, 357, 358, 359, 

360, 361 and 362) for both the variables fall 

outside the control limits, implying an 

unstable process. X Charts of Blast 
Temperature, Steam, Oxygen Enrichment 

and Oxygen Consumption are shown in 

Fig.4 to Fig.7 respectively. From the figures 

it is observed that that the process is falling 

within the specification limits, implying a 

stable process.X Chart of SiO2 is shown in 

Fig.8 and from the figure it is observed that 

two of the observations (229 and 230) fall 
outside the control limits, implying an 

unstable process. It is also observed that 

X Chart of CaO shown in Fig. 9 indicates that 

the process is falling within the specification 

limits, implying a stable process.
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Figure 2. X Chart ofBlast Pressure 
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Figure 3. X Chart ofBlast Volume 
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Figure 4. X Chart ofBlast Temperature 
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Figure 5. X Chart ofOxygen Enrichment 
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Figure 6. X Chart ofOxygen 
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Figure 7. X Chart ofSteam 
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Figure 8. X Chart ofSiO2 
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Figure 9. X Chart ofCaO 

 

These USPC control charts are necessary to 

identify the out-of-control observations and 

to establish norm to monitor the future 

observations. 

 

5.2 Control Limit Construction 

 
The T2 control chart was also constructed 

(Fig. 10) to see whether any observation 

containing a problematic relationship 

between parameters. From the figure it is 

observed that the there is an indication of 

out-of-control of eleven observations (229, 

230, 354 to 362) fall outside the control 

limits. 

 

 

 
Figure 10. T2 Generalized variance chart for critical process variables 

 

Yet it is not known which variable or set of 

variables is responsible for out of control and 

PCA is adopted to identify contribution of 

each critical process variable. 
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6. Diagnosis of Responsible 

Variables 
 

T2 diagnosis is carried out with Principal 

Component Analysis. Principal component 

analysis is a variable reduction procedure. 

Normalized PCA scores are calculated to see 

which one(s) has/have higher scores. Fig.11 

shows the chart of overall average 
contribution of each variable. The analysis 

indicates that the data are auto correlated. 

From figure 11, it is observed that SiO2 

(highest contribution of 0.6) causing out-of-

control situation in observation number 359 

and moderately in 229, 230, 356, 358, 360, 

361 &362. There is a moderate contribution 

by Blast Volume causing out-of-control in 

observation number 229, 230 and Blast 

Pressure in observation number 354, 356, 
358, 360 and 362. The impact of other 

critical process variables in the process is 

having very less impact. 

 

 

 
Figure 11. Overall average contribution of critical process variables. 

 

Table 2. Diagnosis of critical process variables. 

S.no. 
Observation 

Number 

Signaled by 

MSPC 

Potential problematic 

variable(s) 

Signaled by 

USPC 

1 229 Out of control 
Blast Volume 

SiO2 

In control 
Out of control 

2 230 Out of control 
Blast Volume 

SiO2 
In control 

Out of control 

3 354 Out of control 
Oxygen Enrichment 

Blast Pressure 
In control 

Out of control 

4 355 Out of control 
Oxygen Enrichment 

SiO2 
In control 
In control 

5 356 Out of control 
Blast Pressure 

SiO2 
Out of control 

In control 

6 357 Out of control 
Oxygen Enrichment 

Blast Pressure 

Out of control 

Out of control 

7 358 Out of control 
Blast Volume 

Blast Pressure 

Out of control 

Out of control 

0

0.5

1

229 230 354 355 356 357 358 359 360 361 362

Blast Volume Blast Pressure SiO2

Steam Oxygen Enrichment Oxygen consumption
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S.no. 
Observation 

Number 

Signaled by 

MSPC 

Potential problematic 

variable(s) 

Signaled by 

USPC 

SiO2 In control 

8 359 Out of control 

Blast Volume 

Blast Pressure 
SiO2 

Out of control 

Out of control 
In control 

9 360 Out of control 
Oxygen Enrichment 

Blast Pressure 
SiO2 

In control 
Out of control 

In control 

10 
361 

 
Out of control 

Oxygen Enrichment 
Blast Pressure 

SiO2 

In control 
Out of control 

In control 

11 362 Out of control 
Oxygen Enrichment 

Blast Pressure 
SiO2 

In control  
Out of control 

In control 

 

Diagnosis of the out-of-control observations 

for potential process variables are shown in 

Table 2. From the Table 2 it is noticed that 

for 229 and 230 observations Blast Volume 

is signaled out-of-control in MSPC chart, the 

same was signaled in control in USPC chart. 

For the observations 358 and 359 Blast 

Volume is signaled out-of-control in both 

MSPC and USPC. SiO2 is signaled out-of-

control in MSPC charts for observations 229, 

230, 355, 356,358 to 362 and the same is 
signaled in control for all observations 

except 229 and 230. 

 

7. Conclusion 
 

The control of dynamic behavior of process 
variables in a process has been challenging 

and often inexpressible in practice. Some 

industries use traditional statistical process 

control techniques which are not valid for 

monitoring the dynamic behavior. Others 

rely on experience and guesswork. When 

there is more than one quality characteristic 

is to be monitored, it is advisable to use 

MSPC charts to avoid false signals 

associated with using individual USPC chart 

for each variable. This paper explores 

problems in process monitoring variables in 
USPC.  In some complex processes, when 

more number of variables is correlated with 

each other, monitoring simultaneously with 

MSPC charts having the problem of 

interpreting an out-of-control signal and 

detecting their contribution is difficult and 

needs further investigation. In such 

situations we recommend using principal 

components analysis for further analysis. 

The same technique is applied in this case 

study and reduce the number of critical 

process variable to potential responsible 

variables to reduce the redundancy in 
measuring. The findings indicate a clear 

distinction between USPC and MSPC.Silica 

contribution into blast furnace needs control 

by suppression of SiO2 generating. This can 

be achieved by maintaining consisting inputs 

of iron ore, coke, sinter and operating 

parameters of the furnace. The relationship 

among variables must be interpreted with 

caution. The sample is very small proportion 

and research studies with much larger 

sample size would be required to ensure 
appropriate generalization of the findings of 

the study. 

This case study is focused only on the 

process of Blast furnace. The future research 

aimed is to apply the similar type control 

charts at Sinter Plant and Coke-ovens to 

supply the sinter and coke respectively at 
desired level of inputs to Blast furnace. 
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