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SHORTCUT METHODS FOR SIMPLEX-

BASED SENSITIVITY ANALYSIS OF LINEAR 

PROGRAMMING AND RELATED 

SOFTWARE ISSUES 

 
Abstract: This paper has presented an overview of theoretical 

and methodological issues in simplex based sensitivity analysis 

(SA). The paper focuses somewhat on developing shortcut 

methods to perform Linear Programming (L.P.) sensitivity 

analysis manually and in particular to dual prices and its 

meaning and changes in the parameter of the L.P model. 

Shortcut methods for conducting sensitivity analysis have been 

suggested. To perform sensitivity analysis in real life, one 

needs computer packages (software) to achieve the sensitivity 

analysis report for higher accuracy and to save time. Some of 

these computer packages are very professional, but, 

unfortunately, some other packages suffer from logical errors 

in the programming of sensitivity analysis. 

Keywords: L.P. model, Sensitivity analysis (SA), Simplex, 

Shadow price, RHS, computer packages 

 

 

1. Introduction1
 

 

Many managerial decisions hinge on the 

issue of how to make the most of the 

company’s resources of raw material, 

manpower, time, and facilities. L.P. is a 

technique that aims at optimizing 

performance regarding combinations of 

resources. LP can offer managers the 

capability of building scenarios through its 

extensive “what if” analysis and sensitivity 

analysis facilities. While most practical L.P. 

problems would require a very long time to 

solve manually, computer software can be 

utilized to arrive at a solution in a very short 

period. 

When we are dealing with sensitivity 

analysis, we are initially looking into 

changes might happen to the parameters of 
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L.P. model. These possible changes would 

imply to investigate the changes in RHS of 

the model constraints and the coefficient of 

the objective function (Baird, 1990). 

Once the optimal solution to an L.P.problem 

has been achieved using the Simplex 

algorithm, it may be desirable to study how 

current optimal solution stays optimal when 

one or more of the problem parameters may 

change. It is crucial to figuring out how 

sensitive the optimal solution is to some 

changes in the model parameters (Bianchi & 

Calzolari, 1981). Sensitivity analysis, (post-

optimality), therefore, looks at “what if” 

questions scenarios. What happens to the 

cash position, for example, if sales fall by 

5%? What happens if primary supplier 

increases raw material prices by 12%?.  

When we deal with practical problems, 

sensitivity analysis is much more important 

than the result obtained from the optimal 

mailto:drfendi@hotmaail.com
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solution. Such an analysis transforms the 

L.P. solution into a valuable tool to study the 

effect of changing conditions such as in 

management, business, and industry. When 

we include the organization’s business plan 

with the sensitivity analysis report, it will 

show that we have thought about some of the 

potential risks - and that is halfway to 

avoiding them. 

Sensitivity analysis can help in making 

proper decisions. For example, if we may 

want to consider, the effect of increased 

labor force or decrease overhead charges, or 

reducing capacities, due to over-optimistic 

forecasts, what effect of these actions on 

counteracting competitors. 

 

2. Literature Review 
 

The literature on SA is enormous and 

diverse. In late 1980's and early 1990's 

several researchers and scientists were 

involved in the fields of operations research 

working on the L.P. sensitivity analysis 

topic. Some significant advances were 

produced in L.P. sensitivity analysis and 

related problems.  

The research in the field of SA was 

extensively carried out by many O.R. 

specialists. It includes Murty (1983), 

Luenberger (1984), Eschenbach and 

McKeague (1989), Bazaraa and Jarvis 

(1990), Hamby (1994), Murty (1995), 

Clemson (1995), Bradley et al. (1977), Gass 

S. (1997). Gal and Greenberg (1997) worked 

on sensitivity analysis parameter but 

excluded the simultaneous changes in the LP 

parameter. 

Arsham (1992) studied the SA for the 

parameters of structured problems. Khan et 

al. (2011) studied the profit in products by 

using LP techniques and SA.  

However, the existing literature concerning 

our research scope is limited. Most of the 

previous work on sensitivity analysis were 

focused on lengthy methodologies and 

procedures that consume a significant 

amount of time to arrive at a solution of 

sensitivity analysis. 

Yang (1990) introduced two kinds of SA. 

First one is defining the properties of 

sensitivity region while the second one is the 

positive sensitivity analysis. 

Most of the OR software packages available 

for solving L.P. do resolve not only the L.P. 

problem but also provide the details on the 

SA of the optimal solution to certain changes 

in the data. This method has been presented 

in many papers and textbooks up to now 

(Dantzig (1963, 1978); Gal, (1979)).  

 

3. Research objectives 
 

Calculations the ranges for optimality and 

feasibility in sensitivity analysis are covered 

in most operations research books and most 

quantitative textbooks. The methods used 

vary from one book to another although all 

of them achieve the same results. These 

methods may take a very long time and 

effort to solve the sensitivity issues 

manually. Many of these methods have the 

tendency to involve lengthy mathematical 

approaches that they require students to be 

well-equipped with advanced mathematical 

techniques such as matrices and vectors. 

Some other methods need a longer routine to 

get the results. It is much practical to use 

lighter and sounder methods to obtain the 

sensitivity analysis results with ease and 

with less time. It is known that in real daily 

problems, we can use one of the many OR 

packages to solve these issues rather than 

using manual methods. The latter is to be 

adopted in the research as it recommends the 

use of shortcut methods in academic 

institutions. Thus, the paper will explain how 

the shortcut methods can be used to derive 

the sensitivity analysis results. 

 

4. Shortcut Methods to perform 

Simplex-Based Sensitivity 

Analysis of LP Problems 
 

To apply Sensitivity analysis of LP 

problems, the optimal solution of Simplex 
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method must be available. The essence of 

the sensitivity analysis is to examine how 

marginal changes in the parameter of the 

problem might affect the derived optimal 

solution. 

The most taught topics of sensitivity analysis 

at academic institutes comprise the following 

items: 

1) Changes in the objective function 

Coefficients (ci) 

2) Changes in the Right-Hand-Side 

values of the constraints (bi) 

3) Shadow Price (Dual Price) and the 

Economic Interpretation. 

As mentioned earlier, it is expected that the 

methods of performing sensitivity analysis 

taught in educational institutes should be 

easy to apply and short in procedures. In this 

paper, the author has developed and 

implemented simple methods for calculating 

sensitivity analysis that the author has used 

in teaching Operations Research courses for 

his long careers, in education. The 

demonstrations of these methods are shown 

in the following Table 1. 

 

Example 1: 

 

Table 1. Demonstrations of the methods 

  

X1 , X2 ,X3 ,X4 > 0 (Non-Negativity Constraint) 

 

Applying the Simplex Method (Table 2) to 

solving this problem, we obtain the 

following optimal solution: 

 

Table 2. Applying Simplex Method 

RHS a5 S4 S3 S2 S1 
X4 

2.7 

X3 

2.25 

X2 

1.75 

X1 

1.2 
CB Basis 

4 6.2 0 0.2 0 0.12 0 0.16 1 0 1.75 X2 

66.67 -203.3 0 - 10 1 -2.33 0 1.33 0 0 0 S2 

2.67 -4.53 0 -0.2 0 -0.05 1 0.37 0 0 2.7 X4 

3 0 1 0 0 0 0 0 0 0 0 S4 

3.33 -0.67 0 0 0 -0.07 0 0.47 0 1 1.2 X1 
18.2 -2.19 0 -0.19 0 -0.014 2.7 1.85 1.75 1.2  Z 

 2.19 0 0.19 0 0.014 0 0.4 0 0  C-Z 
 

4.1. Changes in the Objective Function 

Coefficients (ci) 

 

The methods of finding the range of 

optimality for the parameters of an objective 

function (Ci) are in two parts. The first part 

deals with variables related to the Basic 

decision variables (X1, X2, and X4), and the 

second part is related to Non-Basic decision 

variables (X3). 

 

4.1.1. Basic-Decision Variables 

 

To calculate the range of basic variable, we 

need to pick up the non-zero values in a c-z 

row of the optimal solution. Exclude the 

Min Z =1.2 X1+1.75X2+2.25X3+ 2.7X4 

     S.t 

(grams of nutrition A )150 > + 10 X4 + 17 X3 + 10 X2 25 X1 

(grams of nutrition B )250  > +70 X4 +35 X3 + 20 X2 15 X1 

(grams of nutrition C )200        > + 25 X4 + 20 X3 + 20 X2 16 X1 

(Kg from grain-1 #     )3 <  X3   

(K.G. Bag weight   )10                                  =  +     X4   +     X3   +     X2               X1 
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values under the artificial variable columns, 

if artificial variables exist, and divide them 

by the corresponding values in the “Basic” 

decision variable row that we try to find the 

ranges. To explain the steps, let us consider 

the“Basic” variable X1 range (Table 3): 

 

Table 3. “Basic” variable X1 range 

c-z 

values 

0.40 0.014 0.19 

Row 

values in 

X1 

0.47 -0.070 0 

c-z / X1 0.85 -0.200 +∞ 

 

Then, pick up the least positive and least 

negative product of the division operations 

(i.e. 0.85 and -0.2) to form the range of C1. 

The range of C1 can be calculated as follows: 

 

1.2-0.2 < C1 < 1.2+0.85  

1 < C1 < 2.05 

 

The C1 range is indicating that the optimal 

solution will remain optimal as long as the 

range of C1 lies between $1 and $2.05. 

Sometimes, when we divide c-z by row 

values, we do not get one of the signs (+ or -

), in this case, we use infinity value for the 

missing sign. (e.g. if there is no (+) sign 

produced in the division process, then we 

use +∞ to be the upper limit). 

Now we can apply the same calculation to 

X2 and X4 as follows (Table 4 and Table 5): 

 

Table 4. Calculation to X2 and X4 

c-z 

values 

0.4 0.014 0.19 

Row 

values in 

X2 

0.16 0.12 0.20 

c-z / X2 2.5 0.12 0.95 

 
𝒄 − 𝒛

𝒄𝒙𝟐
=

0.4

0.16
= 𝟐. 𝟓 

 
0.014

0.12
= 0.12 

 
0.19

0.20
= 0.95 

1.75- < C2 < 1.75+0.12 

- < C2 < 1.87 

 

(- is used in above range as there is no (-) 

sign produced by the division process) 

 

Table 5. Calculation to X2 and X4 

c-z 

values 

0.4 0.014 0.19 

Row 

values in 

X4 

0.37 -0.05 -0.2 

c-z / X4 1.8 -0.28 -0.95 

 
𝒄 − 𝒛

𝒄𝒙𝟒
=

0.4

0.37
= 1.0 

0.014

−0.05
= −0.28 

0.19

−0.2
= −0.95 

 

2.75-0.28 < CX4 < 2.75+1.08 

2.43 < CX4 < 3.83 

 

The example below is quoted from a book 

titled “An Introduction to Management 

Science” by Anderson et al. (2009) to 

compare the author 's method with the 

method used by an international textbook. 

Consider the calculation of C1 range in the 

following example (2): 

 

Example 2: 

 

Max 50X1 +40X2 

s.t. 

3X1+5X2 < 150 

X2 < 20 

8X1+5X2 < 300 

X1,X2 > 0 

 

The final simplex tableau for this problem is 

shown in Table 6. 
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Table 6. The final simplex table 

Basis CB 50x1 40x2 S1 S2 S3 RHS 

x2 40 0 1 0.32 0 -0.12 12 

S2 0 0 0 -0.32 1 0.12 8 

x1 50 1 0 -0.20 0 0.20 30 

z  50 40 2.80 0 5.20 1980 

c-z  0 0 -2.80 0 -5.20  

 

To find the range of C1 according to the 

book method, we assume that X1’s profit 

contribution is now 50+k, where k is some 

number representing a change in X’s profit 

contribution. The final simplex tableau is 

then given by (Table 7): 

 

Table 7. The final simplex table (Continued) 

Basis CB 50X1 40X2 S1 S2 S3 RHS 

x2 40 0 1 0.32 0 -0.12 12 

S2 0 0 0 -0.32 1 0.12 8 

x1 50 1 0 -0.20 0 0.20 30 

z  50 40 2.80-0.2k 0 5.20+0.2k 1980 

c-z  0 0 -2.80+0.2k 0 -5.20-0.2k  

 

The solution will remain optimal as long as 

all c-z < 0. Therefore, for column S1 we must 

have: 

 

-2.8+0.2k < 0 ↔ k < 14 

 

Similarly, we calculate k for S3as follows: 

 

-5.2-0.2k < 0 ↔ k < -26 

 

In other words, the current solution will 

remain optimal as long as X1’s profit 

contribution lies in the following range: 

 

50-26 < C1 < 50+14 

24 < C1 < 64 

 

The range of C1according to author method 

can be shown as follows: 

 
𝒄 − 𝒛

𝒄𝒙𝟏
=

−2.8

−0.2
= 14      

−5.2

0.2
= −26 

  50-26 < C1 < 50+14 

24 < C1 < 64 

 

The author’s methodology is, of course, 

much simpler and shorter than the method of 

the textbook in the example above. 

 

4.1.2. “Non-Basic” Decision Variables 

 

In example (1), X3, is a non-basic decision 

variable since it did not appear in the basis of 

the optimal solution. It is “An Over-Priced 

Good” as we deal with minimizing cost 

model (it is called under-priced-good in 

maximization problems). In sensitivity 

analysis practice, we can find the range of 

such variable for which it will always be out 

of the optimal solution. The Variable X3 is 

over-priced by $0.4 (in a c-z row). The price 

of X3 should be reduced by at least $0.4 

from its original coefficient (cost) in the 

objective function to enter the solution and 

become competitive with the rest of the 

problem variables. However, in the 

sensitivity analysis, we are always keen to 

keep the “non-basic” variable X3 outside of 

the Basis column of Simplex table. 

Therefore, X3 coefficient should have a 

range to be kept out of the basis of the 

Simplex table. The author's method for 
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finding non-basic variable can be presented 

as follows: 

 

(Original X3 coefficient- (under-price 

amount)) < C3 < (Original X3 Coefficient 

+) 

2.25-0.4 < C3 < 2.25+  

1.85 < C3 < + 

 

In general, to determine the range of the 

coefficient of the non-basic decision variable 

in a maximization problem, we set the upper 

limit to less than the value of this variable’s 

column in Z row. While we set the lower 

limit to greater or equal –. The “non-basic” 

decision variable for a minimization 

problem, behaves differently. The upper 

limit always less than +, and “greater than” 

the value of this variable’s column in Z row 

as the lower limit. 

Max Obj. Function      - < C3 < Value of X3 

in Z 

Min Obj. Function      Value of X3 in Z < C3 

< + 

 

4.2. Changes on RHS of the constraints 

(bi) 

 

The proposed bi range method developed and 

implemented by the author over a relatively 

long period is a very simple and 

straightforward shortcut method compared to 

methods that are used in many international 

textbooks.  

To find the range of feasibility of a particular 

constraint’s RHS value (bi), we perform the 

following calculations. Divide the RHS 

column values of the Simplex optimal 

solution by the corresponding values in the 

column of the required additional variable 

associated with the constraint (Slack, 

Surplus, or artificial variable). For example,  

if the calculation of b1 is required, for the 

first constraint, we divide the values of RHS 

column in the optimal solution by the values 

of a (-S1) column. The negative sign that 

precedes Si in the denominator of the 

fraction is s et as default in all calculations of 

any “bi” range. We should be aware of 

bringing Si also with its sign depending on 

the type of the constraint (<, >, or =). For 

example, if we try to find the 1st constraint 

range of feasibility (b1) in the above 

example, the denominator of the fraction 

sign should be (-(-S1) =+S1).  

Referring to the example (1), that is 

presented earlier in this paper, calculations 

of “bi” ranges performed as follows: 

 
RHS

− −S1 
=

4

0.12
= 33.33        

66.67

−2.33
= −28.6         

2.67

−0.05
= −53.4        

3

0
= ∞    

3.33

−0.07
= −47.6 

RHS

−(−S2)
=

4

0
=                  

66.67

1
= 66.67         

2.67

0
=                  

3

0
=          

3.33

0
=  

RHS

−(−S3)
=

4

0.2
= 20            

66.67

−10
= −6.67      

2.67

−0.2
= −13.35          

3

0
=       

3.33

0
=  

RHS

−(+S4)
=

4

−0
= −           

66.67

−0
= −      

2.67

−0
= −       

3

−1
= −3          

3.33

−0
= − 

RHS

−(+a5)
=

4

−6.2
= −0.65        

66.67

203.3
= 0.33     

2.67

4.53
= 0.59     

3

−0
= −∞      

3.33

0.67
= 4.97 

 

The calculated feasibility ranges are: 

 

 

(150-28.6) 121.4 < b1 < 183.3 (150+33.3) 

(250-)   -  < b2 < 316.67 (250+66.67) 

(200-6.67) 193.33 < b3 < 220 (200+20) 

0 < b4 < +  

9.35 < b5 < 10.33 
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Most well-known international text books 

use the much longer method on feasibility 

ranging of RHS. To show the simplicity and 

practicality of the suggested method of 

finding the range of feasibility (bi), consider 

the following example. 

An example from Hamdi Taha’s book (Taha, 

2010) given below to provide some 

comparisons between the two methods: 

 

Suppose we have the following LP model: 

Max Z = 3X1+2X2 +5X3 s.t: 

X1+2X2+X3 < 430 

3X2 +2X3< 460 

X1+ 4X2  < 420 

X1, X2, X3 > 0 

 

The associated optimum solution for the 

above problem is (Table 8): 

Table 8. Optimum solution 

Basic X1 X2 X3 S1 S2 S3 RHS 

z 4 0 0 1 2 0 150 

X2 −1 4     1 0 ½  −1 4   0 100 

X3 3 2  0 1 0 ½  0 230 

S3 2 0 0 -2 1 1 20 

 

Let us find the range of feasibility for the 

first constraint (b1). Hamdi in his book used 

the following method: 

1) He assumes the amount of change 

in first constraint’s RHS=b1. 

2) We need the matrix for the Si 

columns in the optimal solution 

(gray color area in table above) 

3) Then we apply the following matrix 

multiplication as follows: 

 

 

𝑥2

𝑥3

𝑠2

 =  
1/2

0

−1/4
1/2

0
0

−2     1     0

  
430 + 𝑏1

460
420

 =  
100 + 𝑏1 2 

230
20 − 2𝑏1

 ≥  
0
0
0
  

 

These conditions lead to the following 

bounds on 𝐷1: 

 

 𝑥2 ≥ 0 : 100 + 𝑏1 2  ≥ 0 →  𝑏1  ≥  −200 

 𝑥3 ≥ 0 : 𝑥3 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑏1  
 𝑠3 ≥ 0 : 20 − 2𝑏1  ≥ 0 →  𝑏1  ≤  10 

430 − 200 ≤ 𝑏1 ≤ 430 + 10 

230 ≤ 𝑏1 ≤ 440 

 

Obviously, some skills in matrix 

multiplication are required, and the 

associated calculations are time-consuming. 

To see the difference between Hamdi's 

methodology, and the author's methodology, 

let us use the author's method to calculate the 

range for b1: 

 
RHS

- +S1 
=

100

- 1 2 
=-200     

230

-0
=-    

20

+2
=10 

 

Select the lowest negative (-200) and least 

positive (10). The b3 range is 

 

430 − 200 ≤ 𝑏1 ≤ 430 + 10 

230  ≤ 𝑏1 ≤ 440 

 

Apparently, we have reached the same 

answer with much less effort. 

 

4.3. Reduced Cost, Shadow prices, and 

their Economic Interpretations 

 

For any “non-basic” variable the reduced 

cost is the amount of improvement needed in 

the non-basic variable coefficient before it 

will become a “basic” variable in the optimal 

solution, while the reduced cost of a basic 

variable is zero which clearly appears in the 

net evaluation row (c-z) of the simplex 

tableau.  
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If the objective function coefficient of a non-

basic variable Xi is improved by exactly its 

reduced cost, then the LP problem will have 

alternative optimal solutions. If the 

coefficient of the non-basic variable Xi 

improves by more than its reduced cost, the 

optimal solution will allow the non-basic 

variable to appear in the basis column of the 

optimal solution  

The shadow price is the amount of 

improvement in the value of objective 

function because of change of one unit of 

resources in particular constraint's RHS. 

Sometimes we need to add one unit of 

resources to the RHS of the ith constraint, 

then the shadow price for the ith constraint is the 

amount by which the optimal value of z is 

"improved." Usually, the Z-value increases 

in a Maximization problem and decreases in 

a Minimization problem.  A > constraint 

usually produces "non-positive" shadow 

price while a < constraint will normally have 

a nonnegative shadow price. 

For maximization problems, the less or equal 

sign constraint (<) can often be thought of as 

restrictions on the amount of resources 

available, and the objective function can 

reflect the profit. The meaning of shadow 

price (dual price) is by how much the 

optimal value of the objective function will 

either increases or decreases as a result of 

adding or subtracting one unit of resources in 

particular RHS of a constraint. The amount 

of change would give us a good way of 

interpretation of how much we are willing to 

pay for an extra unit of resources. 

In example (1), at least 150 units are 

required for the first constraint as the sign is 

(>). The shadow price of the first constraint 
can be determined by quoting the value in 

row z of the optimal solution tableau under 

the first constraint surplus variable (S1) 

column. The shadow price, or sometimes 

called Dual price, cannot be computed 

straight forward from row z as in example 

one. There are three dimensions connected to 

the shadow price value. The author has 

suggested a 100% rule to calculate the 

shadow price for any LP problem 

(Maximization or Minimization). Moreover, 

this rule will apply whether the type of the 

corresponding constraint is <, > or =. The 

suggested method for calculating the shadow 

price is as follows:  

Suppose we want to find the shadow price of 

the first constraint of example 1: 

Shadow price for 1st Constraint = [value of 

additional variable (S1) in z-row]* [Type of 

constraint sign (- for > sign and + for < or = 

constraint]*[type of objective function (+ for 

Max., - for Min.)] 

 

Shadow price for 1st Constraint = [-0.014]*[-

(>)]*[-(Min)] =-0.014 

Shadow price for 2nd Constraint= [0]*[-

(>)]*[-(Min)] =0 

Shadow price for 3rd Constraint= [-0. 19]*[-

(>)]*[-(Min)] =-0.19 

Shadow price for 4th Constraint= [0]*[+ 

(<)]*[-(Min)] =0 

Shadow price for 5th Constraint= [-2. 19]*[+ 

(=)]*[-(Min)] =+2.19 

 

The economic interpretation of shadow price 

has a significant meaning in the decision-

making process. It shows the actual effect 

(i.e., increasing or decreasing) in the 

objective function value as a result of adding 

one unit of resources or requirement to the 

RHS of the constraint. The method 

suggested by the author is expected to help 

researchers to avoid common errors of 

interpretations of the shadow prices that are 

usually caused by the variations in types of 

LP models as well as in types of constraints. 

Economic Interpretation (E.I) of Shadow 

price= [Shadow price of ith 

constraint]*[Type of objective function 

(Max or Min]. 

By applying this method, shadow price can 

be said to increase (+)/decrease (-) for profit 

(Max) or cost (Min). If we apply this rule to 

example 1 the results will be as follows: 

The (E.I) for 1st Constraint Shadow Price, 

=[-0.014]*[-Min]=+0.014 
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The interpretation that the cost of the 

objective function will increase by $0.014 as 

a result of adding one gm. of Nutrition A in 

the mixture. 

 

E.I. for 2nd Constraint shadow price=0 

E.I. for 3rdConstraint shadow price= [-

0.19]*[-Min] =+0.19 

E.I. for 4th Constraint shadow price=0 

E.I. for 5th Constraint shadow price= 

[+2.19]*[-Min] =-2.19 

 

The economic interpretation of the first 

constraint suggests that if we increase the 

RHS of the first constraint by just one unit 

(gram), then the cost of the objective 

function will increase by $0.014. It implies 

that we add an extra gram of Nutrition A in 

the mixture, the cost of the bag will increase 

by $0.014. Similarly, we can interpret other 

shadow prices. 

 

5. Performing sensitivity analysis 

using computer software 
 

There are various Operations Research 

Software (computer packages). Some of 

these computer packages are usually 

attached to books of OR and Quantitative 

Methods. The main purpose of these 

computer packages is to calculate the 

optimal solution of OR problems using a 

variety of suitable OR techniques such as 

LP, Transportation Problems, Network 

Analysis, Simulation, Queuing Theory and 

other techniques. These computer packages 

also can calculate the range of optimality and 

other aspects of sensitivity analysis such as 

reduced cost, shadow price, and duality. 

These packages are different in the level of 

difficulty and practicality. Various available 

OR Software packages differ in the way of 

producing correct outputs. The most well-

known software is the Excel solver that 

comes with Microsoft product. Alternatively, 

there are packages usually attached to most 

of the well-known textbooks, such as 

Management Scientist (An Introduction to 

Management Science by Anderson and 

others), Tora (Introduction to Operations 

Research by Hamdi Taha), QSB, POM, 

DSS, and many others. The main problem 

with these software packages resides in their 

variable trustworthiness to produce an 

accurate solution. 

 

6. Conclusions 
 

Shortcut methods were presented in this 

paper to produce sensitivity analysis of 

linear programming models. Three different 

topics on sensitivity were taken into account: 

changes in the model parameters, i.e., 

changes on objective function coefficients, 

changes on the RHS values of the LP model 

constraints, and calculating and interpreting 

the shadow price of L.P. model. The analysis 

has suggested a few shortcut methods to 

perform the sensitivity analysis that can be 

used in operations research and quantitative 

methods textbooks to be taught in 

educational institutes. It is very 

straightforward and less time is demanding 

to apply compared to current methods used 

by leading books around the world. 

Attention is given to computer software 

packages used to solve OR Linear 

programming problems. These Software 

packages vary in setting up the input data, 

and also differ in the accuracy of the outputs.  

The research is a significant contribution in 

the sense that it will assist the management 

and business students at different universities 

in making correct decisions by using very 

short and easy-to-calculate methods 

concerning the sensitivity analysis of linear 

programming problems. 

The paper has highlighted the attention to a 

critical issue related to the accuracy of 

computer packages which are used in 

solving L.P. models. Some of these packages 

have programming errors which can not 

arrive at the correct answers. The author is 

planning to carry out research to analyze few 

well-known software in OR to support the 

investigation of such issues. 
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