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PROCESS CAPABILITY ESTIMATION FOR
NON-NORMALLY DISTRIBUTED DATA
USING ROBUST METHODS - A
COMPARATIVE STUDY

Abstract: Process capability indices are very important
process quality assessment tools in automotive industries. The
common process capability indices (PCls) Cp, Cpk, Cpm are
widely used in practice. The use of these PCls based on the
assumption that process is in control and its output is normally
distributed. In practice, normality is not always fulfilled.
Indices developed based on normality assumption are very
sensitive to non- normal processes. When distribution of a
product quality characteristic is non-normal, Cp and Cpk
indices calculated using conventional methods often lead to
erroneous interpretation of process capability. In the
literature, various methods have been proposed for surrogate
process capability indices under non normality but few
literature sources offer their comprehensive evaluation and
comparison of their ability to capture true capability in non-
normal situation. In this paper, five methods have been
reviewed and capability evaluation is carried out for the data
pertaining to resistivity of silicon wafer. The final results
revealed that the Burr based percentile method is better than
Clements method. Modelling of non-normal data and Box-Cox
transformation method using statistical software (Minitab 14)
provides reasonably good result as they are very promising
methods for non —normal and moderately skewed data
(Skewness < 1.5).

Keywords: Process capability indices, Non - normal process,
Clements method, Box - Cox transformation, Burr
distribution, probability plots

specifications are different in different
products (Pearn et al., 1995). A frontline

Process mean yu, Process standard deviation ~ manager of a process cannot evaluate
o and product specifications are basic process performance using p and ¢ only. For
information used to evaluate process this reason Dr. Juran combined process
capability  indices  however,  product parameters with product specifications and

introduces the concept of process capability
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indices (PCI).Since then ,the most common
indices being applied by manufacturing
industry are process capability index Cp and
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process ratio for off - centre process Cpk are
defined as

_ (USL-LSL)

C= =2 (1)
_ s fUSL=X X -LSL

Cpk = Min [———,— =1 2

Capability indices are widely used to

determine whether a process is capable of
producing items within customer
specification limits or not. The process
capability indices Cp and Cpk heavily
depend on an implicit assumption that the
underlying quality characteristic
measurements are independent and normally
distributed. However, these basic
assumptions are not fulfilled in actual
practice as many physical processes produce
non- normal data and quality practitioners
need to verify that the assumptions hold
before deploying any PCI techniques to
determine the capability of their processes.
Some authors have provided useful and
insightful information regarding the mistakes
in interpretation that occur with the
misapplication of indices to non-normal data
(Choi and Bai, 1996; Montgomery, 1996;
Box and Cox, 1964). Alternatively, other
authors have introduced new indices to
handle the skewness in the data (Boyels,
1994) Tang and Than (1999) reported on a
comparative analysis among seven indices
designed for non-normal distribution.

2. Surrogate PCIs for Non-Normal
Distributions

Here the following methods have been
presented to compute PCIs for non-normal
distribution.

e  Weighted variance Method
Clements Method
Burr Method
Box-Cox Transformation Method
Modelling non-normal data using
Statistical software

2.1. Weighted variance method

Hsin-Hung Wu Proposed a new process
capability index applying the weighted
variance control charting method for non—
normal  processes to improve the
measurement of process performance when
the process data are non-normally distributed
and shows that the two weighted variance
method are based on the same philosophy to
split a skewed or asymmetric distribution
from the mean. The main idea of the
weighted variance method is to divide a
skewed distribution into two normal
distribution from its mean to create two new
distributions which have the same mean but
different standard deviations. For a
population with a mean of p and a standard
deviation of o, there are n;observations out
of a total observations which are less than or
equal to p. Also, there are n, observations
out of n total observations which are greater
than p.the two new distributions can be
established by using n; and n, observations
respectively. That is, the two new
distributions will have the same mean p, but
different standard deviations o; and o,.For
the estimation of p,o0; and o,,u can be
estimated by X,i.e.yX™; Xi/n ,and o7 and
o2 can be estimated by S? and S?
respectively. Standard deviation S; with n,
observations which are less than or equal to
the value of X can be computed by using
similar formula to that used to calculate the
sample standard deviation for n total
observations (Ahmed et al., 2008)

_ (x; —%)?
SR ®
o2 - 285 —®)7 @
! 2n, — 1

Also, the sample standard deviation S, with
n, observations which are greater than the
value of X can be calculated as

2 Z?:Zl(xi - 75)2

S% =
2 2n, — 1

5)

408 Y. Wooluru, D.R., Swamy, P. Nagesh



International Journal for Gi

L QUALITY
RESAEARCH

The two commonly used normally-based
process capability indices are Cp, Cpk are
modified using the weighted variance

method as follows
USL-LSL

Cp (WV) = s (©)
Cpk (WV) index can be expressed as:

. [USL-% %—LSL
Cpk (WV) = min [ o ] (7)

2.2. Clements method

For non-normal pearsonian distribution

(which  includes a wide class of
“populations” with non-normal
characteristics)  Clements  (1989) has

proposed a novel method of non-normal

standard deviation, skewness and Kkurtosis.
Under the assumption that these four
parameters determine the type of the Pearson
distribution curve, Clements utilized the
table of the family of Pearson curves as a
function of skewness and kurtosis. Clements
replaced 60 by (Up — L,) in the below

equation (6).
USL-LSL
C,=——"7—
P Up-Lp) ®

Where, Up is the 99.865 percentile and Ly, is
the 0.135 percentile. For C,y, the process
mean L is estimated by median M, and the
two 30, are estimated by (Up — M) and (M
—Lp,) respectively, Figure 1 depicts how a
PCI are obtained for a non-normally
distributed quality attribute.

percentiles to calculate process capability C Coo = min USL-M M — LSL 9
and process capability for off centre Pk~ Up—M’' M—1L,
process Cpy indices based on the mean,
0.7 G&C
064 ;
: Uu«,m‘,-‘ :
05 ! i
044 | :
034 Tolerance range >:
024 ! i
0,135% |- | ! 0135%
00 L , , A -
0 1 2 3 - 5 6 7 8

Figure 1. probability distribution curve for a non- normal data with spec. Limits

Procedure for -calculating PCIs using
Clements method (Boyles, 1994):

e  Obtain specification limits USL and
LSL for a given quality
characteristic

e  Estimate sample statistics for the
given sample data: Sample size,
Mean, Standard deviation,
Skewness, Kurtosis

e Look wup standardized 0.135
percentile,

e Look wup standardized 99.865
percentile

e Look up standardized Median

e Calculate estimated 0.135
percentile using Eqn. Lp =X - s Lp’

e Calculate estimated 99.865
percentile using Eqn. Up = X + s

Up’
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e Calculate estimated median using
Eqn. M = X + sM’, for positive
skewness reverse sign,

e for negative skewness leave
positive

e Calculate non-normal  process
capability indices using Equations.

. _ USL-LSL _ M-LSL
P Up-Lp °’ pl M-Lp 5

USL-M .

and Cpu = m, Cpk—Mln
[Cpu: Cpl]

2.3. Burr distribution

Although Clements’s method is widely used
in industry today, Wu et al. (1999) indicated
that the Clements’s method can not
accurately measure the nominal values,
especially when the underlying data
distribution is skewed. To conduct the
process capability analysis when the quality
characteristic data is non- normally
distributed, Clements’s method can be
modified by replacing the Pearson family of
probability curves with a Burr XII
distribution to improve the accuracy of the
estimates of the indices for non-normal
process data. Two reasons justify the use of
the Burr XII distribution. First reason is that
the two parameter Burr-XII distribution can
be used to describe data that arise in the real
world and especially those concerning non-
normal processes. The second reason is that
the direct use of a fitted cumulative function
instead of a probability density function may
avoid the need for a numerical or formal
integration. It is found that a wide range of
the skewness and kurtosis coefficients of
various probability density functions can be
covered by different combinations of ¢ and k
.Such probability density functions include
most known functions, including normal,
Gamma, Beta, Weibull, Logistic, Log-
normal and other functions.

Burr XII distribution can be used to obtain
the required percentiles of variate X .The
probability density function of a Burr XII
variate Y is

Vi ckyc™1 . .
(LK) = {W ify>0;c>0  (10)
kzo,f(f,k): {0ify<0 (11)

Where ¢ and k represent the skewness and
kurtosis coefficients of the Burr XII
distribution respectively .Therefore, the
cumulative distribution function of the Burr
distribution is derived as:

y _ _ 1 .

F(¥K) = {1 TaoaE Y20 (12)
F(f,k):{o,ify< 0 (13)

Burr-XII distribution can be applied to
estimate capability indices to provide better
estimate of the process capability than the
commonly used Clements method. Liu and
Chen introduced a modification based on the
Clements method, whereby instead of using
Pearson curve percentiles, they replaced
them with percentiles from an appropriate
Burr distribution (Castagliola, 1996).

2.3.1 Procedure for calculating PCIs using
Burr XII Distribution method

Burr method involves following steps:

e Estimates the sample mean, sample
standard deviation, skewness and
kurtosis of the original sample data.
e (Calculate standardized moments of
skewness (a3) and kurtosis (o) for the
given sample size n, as follows:
2 Xj—% 3

3 +Z{ } , where,

(n(n-1))2 $
X is mean of the observations and s is
the standard deviation.
12(n-1)

n Xj-x)*

a4 = (n—1)2 +Z{ s } ) (n+1)(n-3)’
where n is the number of observations in
the data.

e Use the values of a3 and a, to
select the appropriate Burr parameters ¢
and k.Then use the standardized Z = (x -
xX) /' s = (Q - w/o, where x is the

n

[ ] a3=
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random variate of the original data. Q is
the selected Burr variate,u and o its
corresponding mean and standard
deviation respectively. The mean and
standard deviations as well as skewness
and kurtosis coefficients, for a large
collection of Burr distributions are
found in the tables of Burr (Chou, 1996)
and (Castaglioa, 1996). From these
tables, the standardized lower, median
and upper percentiles are obtained.
e Calculate estimated percentiles
using Burr table for lower, median, and
upper percentiles as follows: Lp = X +
$Zooo135s » M= X + 8Zp5, Up =X +'s
Z0.99865
e Calculate process capability indices
using equations presented below.
_ USL-LSL _ USL-M -~
P Up-Lp’ P T yp-M Cpr =
“D“A_—prL Cpk = Min [Cpy, Cpl]

2.4. Box-Cox power transformation

Box and Cox (1964) provides a family of
power transformations that will optimally
normalize a particular variable, eliminating
the need to randomly try different
transformations to determine the best option.
It transform non-normal data into normal
data on the necessarily positive response
variable X as shown in the below equation

A_
X4 ={X= Fora#0 (14)

X*={InX For1 =0 (15)
This continuous family depends on a single
parameter A, it can on an infinite numbers of
values. This family of transformations
incorporates many traditional
transformations like:

Square root transformation, A= 0.50, Cube
root transformation, A=0.33.

Fourth root transformation, A=0.25, Natural
log transformation, A =0.00

Reciprocal square root transformation, A=-
0.50, Reciprocal transformation, A=-1.00,

No transformation needed, when A= 1.00, it
produces results identical to original data.

Most common transformations reduce
positive skew but may exacerbate negative
skew unless the variable is reflected prior to
transformation. Box-Cox eliminates the need
for it (Box and Cox, 1964).

2.5. Modelling Non-Normal data using
Statistical software

Quality control engineers are frequently
asked to evaluate process stability and
capability for key quality characteristics that
follow non-normal distributions. In the past,
demonstrating  process  stability  and
capability require the assumption of
normally distributed data. However, if data
do not follow the normal distribution, the
results generated under this assumption will
be incorrect. Whether it is decided to
transform data to follow the normal
distribution or identify an appropriate non-
normal  distribution model statistical
software’s can be used. Identification of an
appropriate non-normal distribution model is
a good approach to find a non-normal
distribution that fits the data. Many non-
normal distribution can be used to model a
response, but if an alternative to the normal
distribution is going to be viable, the
exponential, lognormal, and weibull
distributions usually works well. Minitab
statistical software can be used to verify the

process stability and estimate process
capability for non-normal quality
characteristics.

3. Methodology

Methodology involves following steps:

e  Understanding the basic concepts of
process capability analysis for non-
normal data

e Data Collection

e (alculate required statistics of the
case study data

e Validate the critical assumptions.

e Estimation of Cp, Cpu, Cpl, Cpk
using non normal methods and
classical method
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e  Comparison of PCIs of non-normal
methods with PCIs of classical
method

3.1. Data collection

In order to discuss and compare the five
methods to deal with non-normality issues,
the data similar to an example presented by
Douglas Montgomery in introduction to
statistical Quality Control, fifth edition is
considered in this paper. Table 1 presents
consecutive measurements on the resistivity
of Silicon wafers. Descriptive statistics:

Mean: 205.32; Standard deviation: 0.0405;
Skewness; 0.39; Kurtosis; 0.21; Range:
0.09785

4. Construction of Control chart,
Normal probability plot and
histogram for validating the
stability and normality
assumption.

4.1. Construction of Control chart to
assess the stability of the process

In this study, in order to demonstrate the
applicability of the method and to make a
clear decision about the capability of the
production process, X-R chart are
constructed using Minitab 14 software to
verify stability of the process. Figure 2
displays that the process is in control as all
the mean and range values are within the
control limits on the both charts

Table 1. Data of bore diameter using boring operation
X1 X2 X3 X4 X5 X bar R
1 205.324 205.275 205.356 205.349 205.343 205.329 0.081
2 205.302 205.310 205.312 205.260 205.300 205.297 0.052
3 205.346 205.280 205.336 205.315 205.346 205.325 0.066
4 205.326 205.438 205.288 205.429 205.299 205.356 0.150
5 205.330 205.397 205.305 205.368 205.354 205.351 0.092
6 205.333 205.316 205.271 205.314 205.318 205.310 0.062
7 205.282 205.396 205.306 205.348 205.297 205.326 0.114
8 205.297 205.354 205.329 205.330 205.324 205.327 0.057
9 205.409 205.313 205.269 205.323 205.319 205.327 0.140
10 205.342 205.397 205.265 205.305 205.303 205.322 0.132
11 205.368 205.397 205.295 205.262 205.315 205.327 0.135
12 205.389 205.301 205.316 205.319 205.353 205.336 0.088
13 205.356 205.298 205.356 205.270 205.294 205.315 0.086
14 205.252 205.273 205.350 205.241 205.361 205.295 0.120
15 205.326 205.297 205.377 205.371 205.316 205.337 0.080
16 205.334 205.234 205.318 205.303 205.342 205.306 0.108
17 205.287 205.262 205.316 205.383 205.312 205.312 0.121
18 205.333 205.328 205.259 205.336 205.396 205.330 0.137
19 205.325 205.297 205.320 205.335 205.285 205.312 0.050
20 205.369 205.283 205.336 205.306 205.336 205.326 0.086
205.323 0.09785
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]
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Figure 2. X and R chart

4.2. Construction of histogram and the normality of the data. Figure 3 display

normal probability plot to check the histogram and Figure 4 display the

normality of the data normal probability plot for the data set. The
histogram for sample data appears to be non-

Graphical methods including the histogram normal.

and normal probability plot are used to check

Histogramof height-1
Normal
251 Mean 2053
StDev  0.04050
N 100
20+ /ﬁ\
g 15-
c
()]
=
[~
(V]
& 104

54 \\
G T T T T T T
205.24 205.28 205.32 205.36 205.40 205.44
height-1

Figure 3. Histogram for case study data
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Probability Plot of height-1
Normal - 95% CI
99.9
Mean 205.3
StDev  0.04050
99 N 100
AD 0.474
95 P-Value  0.237
90
80
= 70
S 60
§ 50
40 1
& 3
20
10
5_
1_
0.1 f T T T T T T
205.20 205.25 205.30 205.35 205.40 205.45 205.50
height-1

Figure 4. Normal Probability Plot

The validity of non-normality is tested by
using Anderson — Darling test (AD).The hole
diameter data is considered as normal as it
pass normality test because, the P-value is(>
0.005),greater than critical value (0.05).This
is done by using Minitab 14 software ,the
result of test is shown in Figure 3and 4.

5. Computation of PCI’s

For case study data using the following
methods:

e  Weighted variance Method

e  Clements Method

e  Burr Method

e Box-Cox Transformation Method

5.1. Weighted variance Method

The statistics for the obtained sample data:
Std. deviation =0.0405, Mean = 205.32 and
Median = 205.32, USL=205.60, LSL=
205.00

Total number of observation in the data set,
n=100

Number of observations less than or equal to

the mean value in the data set, n; =52

Number of observations greater than the
mean value in the data set, n, = 48

The sample standard deviation S; with n,;
observations which are lower than the value
of X can be calculated as:

N1 (. 532
57 = 22E0 o) (16)

2n,—-1
$,=0.0700

Also, the sample standard deviation S, with
n, observations which are greater than the
value of X can be calculated as:

n —
252 (x; —%)2

83 =
2 2n,-1

(17
S,=0.0288

The two commonly used normally-based
process capability indices Cp,Cpk are
modified using the weighted variance
method as follows:
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_ USL-LSL _ 0.6
Cp (WV) = 3(S1+Sz)  3(0.02214+0.0288)
= 0.6 =3.92

0.15282

Cpk (WV) index can be expressed as, Cpk

. [UuSL-x =X-LSL
WV) =min [ ]
( ) 3s, ’ 3S;

_ .n[o.zs 0.32 ]
0.0864 ’0.066421

= min [3.24, 4.81] =3.24

Computation of PCIs using Clements
method (Table 2).

Table 2. Process capability calculation procedure using the Clements’s percentile method

Step No. Procedure Notations Calculations
1 Specifications : USL 205.60
Upper specification Limit Spec. Mean 205.30
Target resistivity LSL 205.00
Lower specification Limit
2 l;asl;mla;es isZz;;mple statistics: N 100
Monp x 205.32
Standard deviation S 0.0405
Sk 0.39
Skewness K 021
Kurtosis Y )
3 Look up standardized 0.135 percentile Lp’ 2.4676
4 Look up standardized 99.865 percentile Up' 3.5037
5 Look up standardized Median in table 2 M’ 0.0652
6 Calculate estimated 0.135 percentile
using Lp 205.220
Eqn. Lp=x-sLp’
7 Calculate estimated 99.865 percentile
using Eqn. Up=x +s Up’ Up 205.461
8 Calculate estimated median using
Eqn.M = % +s M’ M 205.322
9 Calculate non-normal process capability
indices using Equations.
USL-LSL M-LSL o 2489
Cp=—, Cp= ~—— , Cpi 3.156
Up-Lp M-Lp Cpu 2.00
USL-M . Cpx 2.00
Cou = oo Cok = Min [Cpu, Cpr ] P
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Computation of PCIs wusing Burr’s
method (Table 3).

Table 3. Process capability calculation using the Burr percentile method

Step | Procedure Notations Calculations
No.
1 Specifications :
Upper specification Limit USL 205.60
Target resistivity Spec. Mean 205.30
Lower specification Limit LSL 205.00
2 Estimate sample statistics:
Sample size N 100
Mean of sample data X 205.32
Standard deviation ( overall) S 0.0405
Skewness Sk 0.39
Kurtosis Ku 0.21
3 Estimate standard moments of skewness (@3) and Kurtosis (a,) as 0.384
using Sk and Ku values from step 2. a, 3.13
4 Based on a3 and a, from step 3 ,select the parameters ¢ and k c 2.5377
values using the Burr-XII distribution table k 12.5234
5 With reference to the parameters ¢ and k obtained in step 4, use Z0.00135 -2.085
the table of standardized tails of the Burr XII distribution to Zos -0.082
determine standardized lower, median and upper percentiles. Zo.99865 3.595
6 Calculate estimated 0.135 percentile using Lp 205.2355
Eqn. Lp =X+ Zp go135
7 Calculate estimated 99.865 percentile using Up 205.4655
Eqn. Up =X +8 Zg.99865
8 Calculate estimated median using M 205.3166
Eqn. M = x+sZ5
9 Calculate non-normal process capability indices using equations. Cp 2.6080
_ USL-LSL - M-LSL C 3.9038
Ce Up-Lp °> P! M-Lp’ Pl
USL—M C 1.9032
_ o pu
Cou = Jpopr > Cpk = Min [Cpy, Cpi] Cox 1.9032

5.2. Box-Cox Transformation

The Box-Cox transformation parameter (L)
is estimated by Minitab14 statistical software
and corresponding process capability indices
are determined. The accuracy of the Box-
Cox transformation is robust to departures
from normal and it avoids the trouble of
having to search for a suitable method for
each distribution encountered in practice.

The Lambda table as shown in figure 5
contains an estimate of lambda (-0.21) which
is the value used in the transformation. It
also includes the upper Confidence Interval
(0.46) and lower Confidence Interval (-
0.95),which are marked on the graph by
vertical lines .In this case study, an optimal
lambda value that corresponds to -0.21 is
utilized for transforming the data and
calculation of PCIs. The figure 6 shows the
output of the Minitab 14 statistical software.
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Box-Cox Plot of Resistivity Data
Lower CL Upper CL
175 Lambda
(using 95.0% confidence)
Estimate -0.21
= Lower CL -0.95
Upper CL 0.46
Rounded Value 0.00
1254
g
a
1004
751
® Limit
50
T T T T T
-5.0 -2.5 0.0 2.5 5.0
Lambda
Figure 5. Box Cox plot to estimate optimal value of 4
Process Capability of Resistivity Data
Using Box-Cox Transformation With Lambda = -0.21
usL* ISL*
Process Data transformed data —\Vithin
LSL 100 T [] |== == overal
Target * | q |
uUsL 500 - Potential (Within) C apability
Sample Mean  241.35 | | Cp 0.98
Sample N 100 | | CPL 1.09
StDev (Within)  66.9729 | | CPU 087
StDev(Overall) 75.5519 Cpk  0.87
) | | CCpk 0.98
After Transformation —
LSL* 0.380189 | | Overall Capability
Target* * | | Pp  0.94
uSL* 0.271154 | | PPL  1.04
Sample Mean*  0.319472 PPU 0.83
StDev (Within)*  0.0184948 | | Ppk 0-83
StDev (Overally* 0.0194258 | | Cpm
| |

0.28 0.30 0.32 0.34 0.36 0.38

Observed Performance

Exp. Within Performance

PPM < LSL 0.00 PPM > LSL* 513.62
PPM > USL 10000.00 PPM < USL* 4494.34
PPM Total 10000.00 PPM Total  5007.96

Exp. Overall Performance
PPM > LSL* 887.14
PPM < USL* 6436.14
PPM Total  7323.29

Figure 6. Process capability Analysis using Box- Cox transformation

5.3. Computation of PCIs using Burr’s lognormal are used to model the response

method

(resistivity of silicon wafer) .Individual
distribution identification feature in Minitab

In this case study, theoretical non-normal 14 is used to compare the fit of distributions
distributions like exponential, weibull and as shown in the figure 7.
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Probability Plot for Resistivity
Lognormal - 95% CI Exponential - 95% CI Goodness of Fit Test
99.9 99.9 Lognormal
99 90 AD = 0.435
%0 50 P-Value = 0.295
- -
[ c .
9 50 9 10 Exponential
= = AD = 23.551
a a P-Value < 0.003
10 1 >
1 Weibull
0.1 0.1 AD = 2.286
100 200 500 0.1 1.0 10.0  100.0  1000.0 P-Value < 0.010
Resistivity Resistivity
Gamma
Weibull - 95% CI Gamma - 95% C1I AD =0.793
99.9 99.9 P-Value = 0.042
90 99
50 90
§ m § 50
] ]
-9 o 10
i °
i °
0.1 0.1
10 100 1000 100 200 500
Resistivity Resistivity
Figure 7. Probability plots for the individual distribution
5.3.1 Comparison  of  alternative goodness of fit with the data. In this study,

distributions with P-values (For 95%
Confidence Interval)

Individual distribution identification feature
in statistical software (Minitab 14) is used to
construct probability plots for said
distributions in order to compare their

seven distributions are considered to select
the appropriate one that fits the data. The
lognormal distribution provides the best fit
in comparison with other distributions as its
p-value (0.295) is greater than critical value
(0.05).

Table 5. Comparison of Alternative Distributions using output from probability plot

Distribution type AD value P-value
Weibull 2.286 <0.010
Exponential 23.55 <0.003
Log logistic 0.432 0.242
Largest extreme value 0.359 >0.250
Lognormal 0.435 0.295
Gamma 0.793 0.042
Normal 2.045 <0.005

Process capability indices for the case study
data using lognormal distribution are found
through the output of Minitab 14 statistical
software as shown in the figure 8.
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6. Results and Discussion

The following Table 6 presents the PCls
calculation results of different methods.
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Table 6. Numerical results for PCIs of Non-normal and Classical Method

PCIs Obtained Results
Weighted Clements | Burr Box Cox Lognormal Classical
variance Method Distribution Transformation Model method
method (Normality

assumption)

Cp 3.92 2.48 2.60 0.98 0.97 2.37

Cpl 4.81 3.15 3.90 1.09 1.01 2.50

Cpu 3.24 2.00 1.90 0.87 0.93 2.19

Cpk 3.24 2.00 1.90 0.87 0.93 2.19

In this paper, the Clements, Burr, Weighted
variance, Box-Cox transformation methods
are reviewed and used to estimate the PCIs
for non-normal quality characteristic data.
PCIs of Classical method are compared with
the PCIs of all the non-normal methods
considered in the case study. In case of
classical method, Cpu is over estimated and
Cpl is under estimated, when compared with
PCIs of other non-normal methods.
Weighted variance (WV) method gives good
result but it requires manual calculations.
Box- Cox transformation method gives
reasonably good results compared to
classical method. Burr percentile method has
been used effectively and it shows better
results compared to Clements method.

7. Conclusions

In practice, manufacturing processes that
yields non- normally distributed data are
inevitable, therefore the use of traditional
process capability indices to measure
capability of such processes give misleading
results.

Box-Cox method is successfully used to
transform the non-normal data to normally
distributed data and estimated the PCls.

The obtained values of process capability
indices shows that the capability of the
production process for controlling the
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