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DETERMINATION OF CRITICAL 

ROTATIONAL SPEED OF CIRCULAR SAWS 
FROM NATURAL FREQUENCIES OF 

ANNULAR PLATE WITH ANALOGOUS 
DIMENSIONS 

 
Abstract: It is suitable to reduce thickness of circular saw 
when trying to enhance usability of wood raw material, but 
reducing thickness also causes reduction of permissible 
rotational speed which reduces sawing speed. If one increase 
circular saw rotational speed over permissible one the quality 
of machined surfaces will reduce because of enhanced 
vibrations. Permissible rotational speed can be calculated 
from critical rotational speed which can be defined from 
natural frequencies of the saw. In this article critical 
rotational speeds of standard clamped saws (with flat disk 
surface and without slots) are calculated by using finite 
element method and classical theory of thin plates on annular 
plates. Mode shapes and natural frequencies of annular plates 
are determined by using Bessel functions and by using 
polynomial functions. Obtained results suggest that standard 
clamped circular saws without slots and with relatively small 
teeth can be determined from classical theory of thin plates for 
annular plates with accuracy depending on clamping ratio. 
Keywords: circular saw, theory of thin plates, annular 
plates, critical rotational speed 

 
 
1. Introduction1 

 Circular saw manufacturers tends to reduce 
thickness of saws and to enhance their 
rotational speeds with the aim of increasing 
the usability of wood raw material or other 
types of materials (Ucun, 2012; Fragassa et 
al., 2016; Fragassa et al., 2016). But, circular 
saw blade thickness has to satisfy needed 
lateral stiffness (Stakhiev, 2000) for 
appropriate sawing workload and 
appropriate working circular speed which 
                                                           1 Corresponding author: Ante Skoblar 

email: askoblar@riteh.hr  

won't cause high thermal load (Anđelić et 
al., 2016) and decreasing of lateral stiffness. 
Also, reducing of circular saw thickness can 
cause occurrence of high vibrations which 
appears if working circular speed is higher 
than permissible circular speed which 
decreases quality of processing (ie. increases 
roughness and decreases accuracy of 
workpiece dimensions), enhance noise and 
decrease tool durability. Also, non-linear 
vibrations can be self-excited at circular 
saws (Raman and Mote, 1999) or bandsaws 
(Žigulić et al., 2015). If increased vibrations 
happen the solution is to decrease the speed 
of sawing and the workpiece feed speed 
(Angelo and Mote, 1988) which leads to 
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lower efficiency. Specified reasons limit 
thinning of circular saw and it is needed to 
find an optimum. 
Permissible rotational speed is determined 
from critical rotational speed which is the 
maximum rotational speed when circular 
saw rotate with standardized stability 
(Orlowski et al., 2007; Stakhiev, 2000). So 
one of the important issues for circular saw 
manufacturers is to correctly determine 
critical rotational speed. Critical rotational 
speed is determined from circular saw 
natural frequencies which can be determined 
from experiments (Mote, 1965; Pahlitzs and 
Rowinski, 1966; Stakhiev, 2000; Stakhiev, 
1998; Orlowski et al., 2007; Kaczmarek et 
al., 2015) from finite element method (FEM) 
analysis (Gogu, 1988; Holoyen, 1987; 
Leopold and Munz, 1992; Michna and 
Svoren, 2007) and from analytical solution 
for annular plates based on classical theory 
of thin plates (Kirchoff, 1882) where 
Southwell (Southwell, 1922) uses Bessel 
functions and Lee (Lee, 1994) polynomial 
functions to define mode shapes and natural 
frequencies. Orlowski and Sandak (Orlowski 
and Sandak, 2005) emphasize that 
permissible (max.) rotational speed of 
circular saw defined by the manufacturers 
can occasionally be higher than calculated/or 
experimentally determined critical rotational 
speed. Also, Stakhiev (Stakhiev, 2004) 
explicitly adduce an example where 
calculated permissible rotational speed is 
exceeded for 28% meaning that such circular 
saws may become unstable and 
consequences may not only include low 
quality of surface finish, but also workers 
injuries etc. 
The purpose of this article is to analyze 
accuracy of classical theory of thin plates 
used on annular plates with analogous 
dimensions to circular saws while changing 
the clamping ratio. As an example from 
practice an standard clamped saw is chosen 
for which an FEM model is made from the 
producers data and for which an critical 
rotational speed is determined. Then critical 
rotational speed is calculated for annular 

plate with analogous dimensions to circular 
saw by the use of FEM model and by the use 
of theory for classical thin plates (mode 
shapes are determined with Bessel functions 
and by polynomial functions) and obtained 
results are analyzed.  
 2. Calculation of circular saw 

critical rotational speed 
 
Stakhiev defines three types of rotational 
speeds when circular saw is stable (Stakhiev, 
2000):  universal rotational speed nu=(0.31-

0.43) mincrn , 
 optimal rotational speed no=(0.59-

0.696) mincrn , and 
 permissible rotational speed 

np=0.85 mincrn , where mincrn  is the 
minimal critical rotational speed. 

For circular saws there is an theory which 
states that resonance vibrations of circulars 
saws appears as an result of interference 
between two wave components, wave which 
is travelling forward and wave which is 
traveling backward. Based on the stated 
theory an equations for frequencies of 
backward and forward wave (Schajer, 1986) 
are 

  60f s N
nNf f  ,                                       (1) 

  60f s N
nNf f  ,                                       (2) 

 
where N is saws circular speed, rpm, n is 
number of nodal diameters and fs is the 
natural frequency of rotating saw, Hz, which 
can be calculated with expression 
 

   
22 20 0 60s N

Nf f 
                                 (3)

 
 
where f(N=0) is the natural frequency of 
non-rotating saw (N=0), Hz, and  is an 
centrifugal force coefficient. 
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Centrifugal force coefficient  can be 
determined from empirical equation 
(Šteuček, 1971): 
 

21 3 1
4 4

p p
p p

m mn nm m   
                         (4)

 
where mp is the coefficient of Poisson 
process which can be calculated from 
Poisson ratio (mp=1/). 
Circular saw will start to vibrate in a 
resonance when the value of backward wave 
frequency become zero, Figure 1 (Schajer, 
1986).  

Figure 1. Campbell's diagram: vibration 
frequency of circular saw blade in function 
of rotational speed, an example of theory 

about forward and backward travelling wave 
(Schajer, 1986) 

For natural frequency that correspond to the 
chosen number of nodal diameters n (Figure 
2) the value of critical circular speed ncr, rpm, can be determined from this equation 
(Kaczmarek et al., 2015; Stakhiev, 1998). 
 

 0
2

60 N
cr

fn n 
                                         

(5)
  

Critical rotational speed should be calculated 
for all reference modes and one should 
choose the lowest value for final critical 
speed (Figure 3). One can notice on Figure 3 
that the lowest values of critical rotational 
speeds are connected with mode shapes with 
nodal diameters n=2, 3 and 4 which 
correspond to recommendations in practice. 
 3. Application of the classic theory 

of thin plates on annular plates 
 
Natural frequencies and mode shapes of 
annular plate with analogous dimensions to 
chosen circular saw (thickness h, inner 
clamping diameter a, outer diameter which 
equals distance from saw center to the top of 
the teeth) and equal material will be 
determined by the use of classical theory of 
thin plates. Potential and kinetic energy of 
circular saw based on the classic theory of 
thin plates (Meirovitch, 1967), is determined 
with expressions 

    22 2 222
2 2 2

0

1 1 12 1 d d2
b

mn mn mn mnmn
a

DPE r rr r r rr r
      

                                   
        (6)

 

2 2

0
d d2

b
mn

a

hKE r rt
       

                                                                                                   (7)
 

 
where bending stiffness of the blade, D, is 
defined by expression 

 3
212 1

EhD                                             (8)
 

 

where E is Young's modul and  is density. 
Differential equation that describes the 
vibrations of circular/annular plates can be 
derived using Hamilton’s principle. 
Essentially Hamilton’s principle is variation 
of Lagrangian over time and the Lagrangian 
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function is difference of kinetic and potential 
energy. The potential energy consists of 
work done by internal forces and work done 
by external forces. If there are no external 
forces acting on a system then the potential 
energy is equivalent to work done by internal 
forces. Kinetic energy (Baddour and Zu, 

2001) is the most influential part in 
developing differential equation in case of 
stationary or rotating annular plate and 
potential energy is the same for both cases if 
there are no forces acting on a system.  
 

 

 
Figure 2. Referent mode shapes (m,n) calculated with FEM: a) (0,2), b) (0,3) and c) (0,4) 
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Figure 3. Campbell's diagram: dependence of critical rotational speed to the number of nodal 

diameters, (Schajer, 1986) 
 
By applying Hamiltonian principle on to 
equations (6) and (7) one can calculate 
equation of annular plate free vibrations 
w(r,,t) 

22 2 2
2 2 2 2

1 1 0wD w hr rr r t
                 

(9) 
Boundary conditions of mounted circular 
saw are clamped on inner diameter (r=a), 

which is defined in this way 
0w  ,                                                      (10) 

0w
r

                                                       (11)
 

and free outer diameter which is defined in 
this way 

 
2 2

2 2 2 0,r
w v w v wM D r rr r 

                                                                                               (12)
 

2, 2
2 2

1 1 0r
r

M v w wQ D wr r r rr
 

                                                                           (13)
 

 
where Mr is flexural moment and Qr is 
transversal force. By using the method of 

separation of variables on equation (9) the 
solution takes the following form: 

      ,,
0 0

, , cos m ni t
m n

m n
w r t r n e    

 


                                                                       (14)
 

 
where mode shape m,n will be defined with 
Bessel functions and with polynomial 
functions. 
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3.1. Mode shapes expressed with Bessel 
functions 
 
Mode shape expressed with Bessel functions 

must satisfy boundary conditions (10-13) 
and they are defined with (Southwell, 1922; 
Meirovitch, 1967). 

 
    , , , ,

, , , , ,, cos ,m n m n m n m n
m n m n n m n n m n n m n n

r r r rr n A J B Y C I D Kb b b b
                                        (15) 

 
where coefficients , , , ,, ,C  and m n m n m n m nA B D  
follows from specific mode shape, 

 and n nJ Y  are the Bessel functions of first 
kind and the second kind, respectively, while 

 and n nI K are modified Bessel functions of 
first and second kind and dimensionless 
frequency parameter mn  is defined as 
 

2
4 mnmn

h
D

   .                                      (16) 
 
All coefficients are determined from the 
boundary conditions by applying the energy 
principle (Meirovitch, 1967). Natural 
frequency can be determined from 
dimensionless frequency parameter using 
following expression 
 

2
,

, 2
1

2
m n

m n
Df hb


 
                                  (17)

 

 
3.2. Mode shapes expressed with 
polynomial function 
 
Mode shapes expressed with polynomial 
functions must satisfy boundary conditions 
and is defined as (Lee, 1994): 

      
,

2
, cos

P m s
mn mn s

s
r n c r a  


 

  (18)
 

 
Total potential and kinetic energy of the 
system are obtained by entering modal 
functions which includes boundary 
conditions in to equations (6) and (7) (Bert, 
1987) and by applying energy principle one 
obtains an sum of algebraic equations which 
can be written in matrix form (Meirovitch, 
1967; Bert, 1987; Kim et al., 1990) 

 
,222 23 2
,332 33 3

,42 3

... 0

... 0
...... ... ... ... 0

... 0

mnN
mnN

mnN N NN

c
c

c

                                      (19)
 
where ij  is defined as  

 
          
      

4 3 22 2 2 21 0 1
12 2 2 42 3 1

1 1 2 2 1 1
3 2 2 1

i j i j i jij
i j i j i jmn

ij i j X ij i j X ij n n i j i j X
n i j X n n X X

  
  

     
    

             
       (20) 
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and lkX  is defined as 
 

  d
b ll kk
a

X r a r r                                                                                                                  (21)
 

or 
 

 
 

 
   

     

1

1

1 1 1

0, 1

, 01
, 12 1

! ln ! , 01 ! 1 ! 1 ! !

l

llk

l k s l k s l k sl

s s l k

b a kl
b a aX b a kl l

bl a l a b aa kl k k l k s l s s





       

   

                               
                          (22)

 

 
 
Dimensionless frequency parameter mn  is 
than calculated from the fact that quadratic 
matrix determinant must be zero to find an 
solution. Then, natural frequency can be 
determined from dimensionless frequency 
parameter using expression (17). 
 4. Examples 
 
Saw teeth dimensions are taken from the 
literature (Nishio and Marni, 1996) and are 
shown on the Figure 4. Dimensions of the 
circular saw blade disk are taken for the 
circular saw Bosch 2609256883 (Precision 
Circular Saw Blade with 48 Carbide Teeth, 
300 mm Diameter, 30 mm Bore, 3.2 mm 
Cutting Width) without slots and are shown 
on Figure 5.  
 
4.1. Example 1 
 
The purpose of the Example 1 is to define 
and compare natural frequencies of standard 
circular saw without slots and annular plate 
with analogous dimensions by the use of 
FEM. Input data for annular plate (Figure 6) 
are listed in the Table 1.  

Table 1. Geometric characteristics of 
annular plate 
Geometrical 
characteristics  

 
Outer radius b (mm) 150 

Inner clamping radius a 
(mm) 

55 
Thickness h (mm) 2,2 

 
It can be seen from the Table 2 that 
calculated natural frequencies converge to 
the value with minimum element size 0.003 
m. Also it can be seen that the percentage 
difference between results of annular plates 
and circular saws for referent mode shapes 
(m, n) are: (0,2) 0.62%, (0,3) 3.57% i (0,4) 
7.25%. The results are in good agreement for 
the first two referent modes but for the third 
mode there is a bit bigger deviation. One can 
conclude that results would be better if 
circular saws with smaller teeth were used. 
In Table 3 there are natural frequency of 
circular saw blade and annular plate with 
analogous dimensions calculated by FEM. 
 



 

184                                         A. Skoblar, N. Anđelić, R. Zigulic 

  Figure 4. Teeth geometry of circular saw blade (dimensions are in mm) 
 
 

 Figure 5. Geometry of circular saw blade (dimensions are in mm), 110 mm is the clamping 
collar outer diameter  
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 Figure 6. Dimensions of annular plate 
 
Table 2. Natural frequency of circular saw blade and annular plate obtained by using FEM in 
Femap NX Nastran 

Mode 
Shape 
(m,n) 

Natural 
frequency 
of circular 
saw blade 

[Hz] 
(Element 

size 0.008) 

Natural 
frequency 
of circular 
saw blade 

[Hz] 
(Element 

size 0.005) 

Natural 
frequency 
of circular 
saw blade 

[Hz] 
(Element 

size 0.003) 

Natural 
frequency 
of annular 
plate [Hz] 
(Element 

size 0.008) 

Natural 
frequency 
of annular 
plate [Hz] 
(Element 

size 0.005) 

Natural 
frequency 
of annular 
plate [Hz] 
(Element 

size 0.003) 
(0,0) 198.90 198.30 197.82 195.67 194.78 194.41 
(0,1) 200.55 199.95 199.50 196.94 195.81 195.39 
(0,2) 231.35 230.22 229.78 230.31 228.84 228.36 
(0,3) 334.77 331.81 331.08 345.02 343.37 342.90 
(0,4) 513.49 507.03 505.55 545.21 542.83 542.29 

 
 
Table 3. Natural frequency of annular plate obtained by different methods 

Mode Shape 
(m,n) 

Frequency obtained 
using Femap NX 

Nastran for annular 
plate [Hz] (Element 

size 0.003) 

Frequency obtained 
using linear 

vibration theory of 
annular plate, Bessel 

[Hz] 

Frequency obtained 
using linear 

vibration theory of 
annular plate, 

polynomial s=6 [Hz] 
(0,0) 194.41 194 194 
(0,1) 195.39 189.9 195 
(0,2) 228.36 228.24 228.3 
(0,3) 342.9 343.29 343.4 
(0,4) 542.3 543.43 543.5 
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 Figure 7. Referent annular plate mode shapes (m, n) clamped at the inner radius: a) (0,2), b) 
(0,3) i c) (0,4) 

 
On the figure there are referent annular plate 
mode shapes and the similarity with circular 
saws mode shapes can be seen (Figure 7). 
 
4.2. Example 2 
 
The purpose of Example 2 is to calculate 
natural frequencies with the use of classical 
theory of thin plates on annular plates and to 
compare it with the FEM results (Table 3). 
It can be seen that calculated natural 
frequencies from classical theory of thin 

plates completely match FEM natural 
frequencies for annular plate. The percentage 
difference for mode shapes (m, n) are: (0,2) 
0.03%, (0,3) 0.15% and (0,4) 0.22%. 
 
4.3. Example 3 
 
The purpose of the Example 3 is to analyze 
convergence of annular plates natural 
frequencies when mode shapes are defined 
with polynomial functions (18) (Table 4). 

 



 

187 

Table 4. Convergence of natural frequency with increasing of polynomial order, Hz 
  (0, n) 
s 0 1 2 3 4 5 
2 287 287.1 307.2 391.3 563.1 817.3 
3 201 203.2 237.6 350.4 547.1 814.7 
4 194.2 195.4 229.2 344.4 544.3 814 
5 194 195.1 228.5 343.8 544.1 814 
6 194 195 228.3 343.4 543.5 813.3 

 
Maximum number of polynomial functions 
that can be used to define mode shapes, P, is 
8 (Lee, 1994). Number of polynomial 
functions needed to define mode shape is in 
direct correlation with the number of modal 
circles in mode shapes. In used referent 
mode shapes number of modal circles is 
zero, while the number of nodal diameters is 

2 to 4 which associate to possibility that 
relatively small polynomial order s can give 
good accuracy (ie. percentage differences 
between referent natural frequencies with 
polynomial order s=3 and s=6 (see Table 5) 
for referent modal shapes (m,n) are: (0,2) 
4%, (0,3) 2.04% i (0,4) 0.66% ). 

 

 Figure 8. Natural frequencies of mode shapes m=0, n=2,3 i 4, for annular plate calculated with 
polynomial functions (curves) and for circular saw calculated with FEM (markers) 

 
On the Figue 8 there are values of different 
natural frequencies as a function of clamping 
ratio (a/b) where one can see that s=3 has 
pretty high accuracy through the whole 
clamping ratio domain. 
 
 

4.4. Example 4 
 
The purpose of Example 4 is to analyze 
values of critical rotational speeds for 
referent mode shapes m=0, n=2,3 and 4, as a 
function of clamping ratio (a/b), Figure 9. 
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 Figure 9. Critical rotational speed for referent mode shapes m=0, n=2,3 i 4, for annular plate 
calculated with polynomial functions (curves) and for circular saw calculated with FEM 

(markers) 
 
On Figure 9 there are values of critical 
rotational speed for referent mode shapes 
m=0, n=2,3 i 4, for annular plate calculated 
with polynomial functions (s=3) and for 
circular saw calculated with FEM. It can be 
seen that clamped ratio domain is devided in 
to bands where minimum critical speed 
follows from mode shape (0,2), than from 
mode shape (0,3) and at the end from mode 
shape (0,4). That kind of behavior of critical 
rotational speed is expected and that is why 
it is recommended in practice to calculate 
critical rotational speed for all referent mode 
shapes and than to choose the minimum one. 
On the Figure 9 there are also values of 
critical rotational speeds calculated with 
FEM model for circular saw. It can be seen 
that percentage difference exists and the 
value is 5.83%. The value would be smaller 
if smaller teeth were used. 
 5. Conclusions 

 
In this article an procedure for calculation of 
critical rotational speed of standard clamped 
circular saw (with flat disk surfaces and 
without slots) is described. Critical rotational 
speeds are calculated from the values of 

natural frequencies which are calculated with 
FEM and classic theory of thin plates used 
on annular plate with analogous dimensions. 
In the classic theory of thin plates mode 
shapes are defined with Bessel functions and 
with polynomial functions. The convergence 
of the natural frequencies calculated with 
polynomial functions are analyzed and an 
optimum accuracy is chosen for calculation 
of critical rotational speed. It is seen that 
there is high percentage differences between 
natural frequencies for mode shape (0,4) 
calculated with FEM for circular saw and 
polynomial expressions for annular plate 
which is connected with relatively big teeth. 
I one chooses smaller teeth it is expected that 
natural frequencies calculated for annular 
plate would have better accuracy. Also 
critical rotational speeds are calculated from 
the annular plates with modes defined by 
polynomial functions with defined lower 
polynomial order and results are shown in 
clamped ratio domain. It can be concluded 
that for the chosen circular saw one can 
predict critical rotational speeds for 
clamping ratio domain which ends with 
minimium for nodal diameter n=3. Higher 
accuracy for higher clamping ratio domain is 
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expected for standard circular saws with 
smaller teeth. 
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