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GROUP DECISION MAKING APPROACH 

FOR RANKING AND SELECTING 

MAINTENANCE TASKS FOR JOINT 

SCHEDULING WITH PRODUCTION 

ORDERS 

 
Abstract: Group decision-making has captured the attention 

of researchers for decades but due to its importance and 

complexity further explorations and studies, namely for its 

application in industrial engineering continue to be needed in 

the current digital age. In this paper a group decision making 

approach is put forward for evaluating and selecting 

maintenance tasks to enable its joint scheduling with 

production orders, by using a collaborative management 

system. The proposed approach includes a two-stage 

collaborative assessment method, which enables a set of 

decision makers to rank and select maintenance tasks for 

being scheduled with production orders. The proposed 

approach uses a dynamic multi-criteria decision model that 

aggregates information about historical, current and 

provisional data about maintenance tasks. The approach is 

illustrated through an application example and 

contextualized in the state of the art. This study permits to 

realize that collaborative management approaches enable 

conducting a dynamic, integrated, distributed, intelligent, 

predictive, time and condition based maintenance task 

management in real time, based on the fusion of past, present 

and predicted data, and that there is still a lack of 

contributions regarding its use of in industrial management. 

Keywords: group decision making; collaborative system; 

dynamic, integrated, distributed, parallel, and real time 

based industrial management. 

 

 

1. Introduction 
 

Group decision making (GDM) is a research 

topic that falls within collaboration, and 

collaborative management domain (Kusi-

Sarpong, et al., 2018; Varela, Putnik, & 

Romero, 2022; Varela, et al., 2022a), and is 

of primer relevance in the digitalization era, 

by promoting and enabling a sustainable 

development of companies (Varela, Putnik, 

& Romero, 2022, 2023; Varela, et al., 

2022a,b, 2023). 

The development of GDM approaches 

require the acquisition, processing and 

analysis of varying kind of data, which 

typically is expressed through Key 

Performance Indicators (KPI), for being 

monitored and controlled by using 

appropriate dashboards and systems 

(Simonov, et al. 2018). 
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Over the last 20 years, the processing 

industries have invested heavily in 

automation and plant information systems 

such that the data is now accessible. As a 

result, this data should now be possible to 

put into productive usage. The challenge 

with raw data, no matter how accessible, is 

that it is just data, and data still requires a lot 

of work before it can be turned into 

knowledge. In most cases, the data needs to 

be validated, analysed and converted into a 

level of knowledge that is actionable, and 

this can still require a significant investment 

of time and resources. 

Several kind of KPI have been frequently 

used to analyse companies‟ performance in a 

given context intending to reachcertain 

organizational goals. Every companies‟ 

functional group defines its objectives and 

targets, and if the raw operational data can 

be converted in KPI for being processed and 

analysed, preferably in real-time a better 

monitoring and control, on the processed 

data can be reached and thus better decision 

making processes can occur.  

Information monitoring, based on proper 

DSS is fundamentalforobtaining maximum 

profit out of KPI through the use of suitable 

systems‟ data visualizationinterfaces, and 

which are currently being improved by using 

advanced and dynamic digital dashboards, 

namely through the use of power BI graphics 

that enable real time generated data to be 

analysed. Although, the real potential of a 

system data visualization interface relies on 

its interactive ability to quickly sort and 

display the consolidated performance 

metrics in order to highlight the top priority 

requirements and provide guidance on 

further actions required. This is performed 

through a combination of filtering, 

uncertainty filtering, normalization, 

weighting, aggregation, ranking, and 

selection techniques, and put available 

through appropriate collaborative systems 

and platforms (Campanella, et al., 2012; 

Arrais-Castro, 2015a,b, 2018; Jassbi, et al, 

2016; Varela, et al., 2018; Simonov, et al., 

2018).  

As mentioned by Knoben, &Oerlemans 

(2006), inter-organizational collaboration 

enables to unify disparate systems and 

solutions in order to achieve overall strategic 

and operational excellence. Therefore, intra 

and intercompany and manufacturing 

environments collaboration should be 

intensified, and this can be accomplished by 

putting into use appropriate group decision 

support approaches. Such kind of approaches 

will permit to fully integrate decision-

making processes among diverse 

manufacturing plants and resources 

interactions, by using suitable platforms and 

systems offering effective support to carry 

out distributed and integrated management. 

Such unified workflow environments will 

thus promote and enable collaboration and 

support different decision making teams to 

work together with an understanding of their 

specific requirements in the context of a 

general view over an extended and/or virtual 

enterprise, which is of upmost importance in 

manufacturing and management, for instance 

in collective maintenance and production 

management. 

Maintenance planning plays an important 

role in every service and manufacturing 

system, as it makes them more reliable and 

keeps them at an optimal operational level in 

order to provide high quality services and 

products. Additionally, the proportion of 

maintenance costs to the total production 

costs, which ranges from 15% to 70% 

according to the type of the manufacturing 

firm (McCall, 1956), makes maintenance 

planning a critical issue. Maintenance 

models can be broadly classified into two 

types: time-based and condition-based 

models (Rahmati, et al., 2018). Recently, the 

joint optimization of production and 

maintenance plans has gained more 

attention. However, it has not been well 

studied compared to research on optimizing 

maintenance planning and production 

schedules independently (Pan, Liao, & Xi, 

2012; Bajestani, Banjevic, & Beck, 2014; 

Fitouhi, et al., 2017). In addition to the 

above-mentioned classification of 



International Journal for Quality Research, 18(1), 235–258, 2024, doi: 10.24874/IJQR18.01-16 

 

 

 

237 

maintenance models, integrated maintenance 

and production scheduling models can also 

be classified into two types: integrated 

maintenance and production scheduling 

models with time-based maintenance 

activities; and integrated maintenance and 

production scheduling models with 

condition-based maintenance activities. 

Maintenance operations can be classified 

into two main large groups: corrective 

maintenance (CM) and preventive 

maintenance (PM). CM corresponds to the 

actions carried out when the failure has 

already taken place, and PM is the action 

taken on a system while it is still operating. 

PM is carried out in order to keep the system 

at the desired level of operation, and several 

PM policies can be defined (Rahmati, 

Ahmadi, & Govindan, 2018; Sloan, 

&Shanthikumar, 2000; Taghipour, 

&Azimpoor, 2018), with the aim of 

determining when it is necessary to carry out 

PM operations on the machines according to 

different criteria used. 

Besides maintenance planning, the 

maintenance and production scheduling is a 

critical decision process for the gainful 

management of any manufacturing system. 

While the first ensures reaching the 

production goals, besides thesatisfaction of 

customer demands, the second ensures that 

manufacturing assets are available and in the 

proper condition to perform their required 

production tasks when needed. The two 

decision processes are interdependent since 

they share a clear common issue, the 

manufacturing assets that are used through 

production and restored by maintenance 

actions. 

Integrating production and maintenance 

scheduling willthus enable optimizing the 

joint production orders and maintenance task 

programming, while avoiding penalising 

drawbacks in companies (Ladj, et al., 2016). 

Although, according to the study conducted, 

it is possible to realize that there is still a gap 

in this research domain, as insufficient work 

has been put forward regarding joint 

maintenance and production management 

strategies and tools. 

In order to provide a contribution in this 

focused domain, in this paper, a group 

decision-making (GDM) approach for 

supporting maintenance tasks assessment 

and selection is presented, for enabling 

further jointmaintenance tasks and 

production orders scheduling, to reduce the 

lack of research that still prevails in this 

scientific domain. The proposed GDM 

approach is based on a Dynamic Multi-

criteria Decision Model (DMCDM) (Varela, 

et al., 2018), implemented through a two-

stage maintenance tasks processing 

(2SMTP) methodology, which is put 

available through a Collaborative 

Management System (CMS) that does 

further permit the integrated maintenance 

tasks and production orders scheduling. 

To properly expose the developed work, this 

paper follows with a resumed literature 

review about DSS, MCDM and GDM, along 

with a general overview about approaches 

and systems for supporting maintenance and 

industrial operations management, in section 

2. Next, the developed collaborative 

management system for joint maintenance 

tasks and production orders processing, 

along with the underlying group decision-

making approach, and the proposed two-

stage maintenance tasks assessment and 

selection method is briefly described, in 

section 3, and being further illustrated 

through and industrial example of 

application, in section 4. Follows, a final 

discussion and contextualization of this work 

within the state of the art, in section 5, and 

the main conclusion and proposed future 

work in section 6. 

 

2. Literature review 
 

In this section, a general overview about 

decision support methods and systems, along 

with group decision-making approaches is 

briefly presented next, in subsection 2.1, 

followed by a summarized description of 

maintenance and industrial operations 
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management approaches and decision 

support systems, in subsection 2.2. 

 

2.1 Methods and systems for group 

decision-making support 

 

A Decision Support System (DSS) can be 

explained as an interactive computer-based 

system, which can be helpful for decision 

makers to use quantitative models and data 

for solving complex problems (Bhatt & 

Zaveri, 2002; Lee & Huh, 2006). A 

DSSenables supportingmore or less complex 

decision processes by using different kind of 

middleware and technology, and tools 

(Sprague & Carlson, 1982; Zarate, 1991; 

Vieira, et al., 2018; Vafaei, et al. 2019). 

Keenan (2016) referred that DSS have been 

developed since 1970s, and since then 

continuedgrowing and improving, based on 

new technologies, namely about databases 

and visual interfaces applied for properly 

supportingdecision-making processes. DSS 

mostly involve Management Science and 

Operations Research fields. DSS and 

management strategies have thus a 

meaningful relationship in manufacturing 

environments for reaching well-suited 

decisions (Brannback, 1994).  

During recent decades, DSS have been 

developed in different contexts, and some 

contributions are summarized next. 

Group Decision Support Systems (GDSS) 

and Executive Information Systems, which 

was changed to the Enterprise Information 

Systems (EIS), introduced to support DSS 

tools are becoming much improved and 

more effective. GDSS currently 

providemany useful options, 

includingbrainstorming, idea assessment and 

some other facilities for enabling 

communication in more or less complex 

problem solving scenarios (Costa, et al. 

2003; Limayem & Banerjee, 2006; Varela, et 

al., 2021), along withother kind of the so-

called Integrated Decision Support System 

(IDSS) that enable improving the 

effectiveness of classical DSS by 

combiningthem (Liu, et al. 2010).  

More recently, DSS has applied in integrated 

models with Multiple Attribute Decision 

Making (MADM) and Multiple Objective 

Decision Making (MODM) in general 

framework of Multiple Criteria Decision 

Making (MCDM) for endowing a better 

process and environment in decision support 

(Jaramillo, et al. 2005; Qureshi, et al. 2017). 

Bakshi, et al. (2015) mentioned that when 

there is uncertainty indecision-

makingprocesses the MCDM models will 

become more complicated thus requiring 

appropriate Multi-Criteria Decision Support 

Systems to present appropriate solutions in 

practice. The authorsmention a new decision 

support system established based on models, 

survey (literature review) and human experts 

interacting througha proposed framework. 

The main issue of their research was 

selecting the main criteria in MCDM 

models. Some other studies applied this kind 

of approaches in practice, and some are 

resumed next, to mention a fez.  

Taha&Rostam (2012) applied a hybrid fuzzy 

AHP-PROMETHEE as main part of a 

decision support system for machine tool 

selection in flexible manufacturing cell. 

They mentioned that their research shows 

that MCDM methods can be a useful part of 

a DSS and that their vision would be helpful 

in decision making in solving complex cases.  

Razmak & Aouni (2015) reviewed research 

related to MCDA and DSS and found out 

more than 100 research articles foranalysis. 

They categorized the articles into 9 different 

sections, regarding their application fields. 

These 9 sections were: Production and 

Supply Chain Management; Education; 

Human Resource Management; Finance and 

Investments; Real state and Constructions; 

Environmental aspects; Medical aspects; 

Electronic business and electronic 

commerce, and Multimedia.  

Leyva Lopez, et al. (2016) proposed a model 

and system for supporting group decision-

making based on a MCDM approach. The 

authors state that their approach was 

structured based on ELECTRE method and 
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designed completely based on the web to 

turn the underlying process more reachable 

and easier applicable in practice. 

Theirproposed GDSS enable to put forward 

some advices for decision makers in order to 

help themmanage their priorities and 

preferences to allowproper decision rules 

with some degree of consistency and 

consensus.  

In otherworks, namely in (Arrais-Castro, et 

al., 2018; Simonov, et al., 2018; Varela, et 

al., 2018), DSS models were proposedby 

using different kind of approaches, in 

different application contexts. According to 

the examples provided, it is possible to 

realize that DSSand approachesare applied in 

many different context and manufacturing 

and management environments, thus there is 

still need fornewcontributions to increase its 

full practical capability and usability, for 

instance, in the industrial context. 

Furthermore, decision making with 

uncertainty treatmentand future or 

prospected data processing, needs integrated 

and advanced DSS models and systemsto 

continue beingdeveloped to decrease 

ambiguity and vagueness of knowledge 

about forecasted data, which has become, 

especially currently, in the digital age,more 

urgent and necessary,for puttinginto practical 

use in manufacturing management (Putnik, 

et al., 2021). 

 

2.2 Approaches and systems for 

supporting maintenance and industrial 

operations management 

 

Maintenance is a crucial activity in industry, 

with a significant impact on costs and 

reliability, being immensely influential on a 

company‟s ability to be innovative, 

whilepermittingcosts reduction and global 

benefits, namely increased quality and 

general performance.  

In the scope of maintenance management, 

any unplanned downtime of machinery 

equipment or devices does usually degrade 

or harm a company‟s core business, 

potentially resulting in significant penalties 

and unmeasurable reputation loss. According 

to some studies, operation and maintenance 

costs can range from 15% to 70% of total 

production cost in some companies 

(Bevilacqua, & Braglia, 2000; Gong, & 

Qiao, 2014). Therefore, it is critical for 

companies todevelop a well-implemented 

and efficient maintenance strategy to prevent 

unexpected drawbacks, and improve overall 

reliability, while reduce manufacturing 

systems‟ operating and maintenance costs. 

The evolution of modern techniques, namely 

with the emergence of the Internet of things 

(IoT), along with varying kind of sensing 

technology, and new or improved artificial 

intelligence approaches and tools, among 

others, stimulates a transition of maintenance 

strategies from Reactive Maintenance (RM) 

to Preventive Maintenance (PM), andto 

Predictive Maintenance (PdM) (Jimenez, et 

al., 2020). RM is only executed to restore the 

operating state of the equipment after failure 

occurs, and thus tends to cause serious 

unproductive times, while frequently 

resulting in high response andreparation 

costs. PM is carried out according to a 

planned schedule based on time or process 

iterations to prevent breakdown, and thus 

may perform unnecessary maintenance, 

typically resulting in high prevention costs. 

In order to achieve the best trade-off 

between the RM and PM, the PdM can be 

performed, based on some online assessment 

of the conditionof manufacturing assets, and 

thus reach timely interventions before failure 

occurs, whilepreventing from high 

maintenance frequency, unplanned RM, and 

the incurrence in increased costs associated 

to frequent PM. 

Asset management deals with the 

optimization of manufacturing assets usefor 

reducingcosts. An asset management system 

manages the assets over the whole life cycle, 

especially their reliability and efficiency. It 

is also responsible to optimize utilization and 

cost-effective maintenance of the assets. 

Moreover, it generates and provides 

information regarding the so-called “asset 

health” development and prognosis to 
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support decision making of the enterprises‟ 

production management (Namur, 2009). 

Using the “asset health” information to 

generate an optimal production plan is a 

viable solution to better integrate a 

maintenance and a production planning 

system to increase the overall performance 

(e.g. in terms of costs) of manufacturing 

operations. Although some work was already 

carried out in this sense, industry is still 

lacking of appropriate and effective systems 

for supporting advanced maintenance and 

production management (Zhai, Gehring, & 

Reinhart, 2021).  

Biondi and Harjunkoski (2017) proposed a 

joint scheduling approach for the production 

and maintenance of process plants that 

explicitly keeps track of the assets life cycle. 

The scheduling system includes a simple 

model of the asset wear that can be based on 

the concept of residual useful life (RUL) or 

of probability of failure.The authors state 

that the asset monitoring system is 

responsible of providing two types of 

information to the scheduling system: on the 

one hand, an estimation of the parameters 

describing the wear caused by the production 

on the asset. On the other hand, if an 

extraordinary condition of the asset 

isdetected, it is responsible to update a 

current RUL in the asset wear model of the 

scheduling system. Assets health 

information, along with the production 

orders, is managed by the scheduling system 

that takes care of the sequencing and timing 

of production tasks on the plant and triggers 

a maintenance action on the assets whenever 

this is required.According to the authors, 

their proposedmethod makes an effective use 

of factory units‟ health information to 

generate a feasible plan for joint production 

and maintenance planning (Biondi, & 

Harjunkoski, 2017).  

Based on (Staufen, 2018), PM has not been 

properly explored in industry. A survey in 

2020 shows that PM continues being a hot 

topic, for example to determine the best 

point in time to do maintenance tasks (Zhai, 

et al., 2020).  

Two types of flexible PM strategies, i.e., 

time-based PM (TBPM) and condition-based 

PM (CBPM), are commonly analysed and 

applied (Wang, Yan, & Zhang, 2021). 

According to these authors, the application 

of TBPM is straightforward and relative ease 

of implementation, however, TBPM may 

lead to under-or over-maintenance due to 

inaccurate estimate of the stability of 

production systems. In contrast, CBPM is of 

more complexity, which continuously 

monitors and analyses the machine status to 

determine the implementation of the 

maintenance activity. The authors state that 

despite the complexity of computational 

requirement and uneven maintenance cycles, 

CBPM strategy can reduce the maintenance 

frequency to a minimum necessary level, 

thus improve a global production system‟s 

productivity level.  

Some examples of application of TBPM in 

diverse kind osproduction scenarios, 

integrating different production scheduling 

strategies, are presented in (Chen, 2000; 

Chen, et al., 2006; Mosheiov and Sarig, 

2009; Yang, et al, 2011), while CBPM has 

also been focused by several researchers, for 

instance in (Zandieh, Khatami and Rahmati, 

2017; Rahmati, Ahmadi and Govindan, 

2018; Sloan and Shanthikumar, 2000; and 

Ghaleb, et al., 2020), just to mention a few. 

Prognostics and health management (PHM) 

is a relatively young engineering discipline 

that aims to enable “real-time health 

assessment of a system under its actual 

operating conditions as well as the prediction 

of its future state based on up-to-date 

information” (Kim, et al., 2017), with PdM 

being the underlying maintenance strategy 

that uses prognostics results of PHM. 

The authors of (Li, Lei & Bian, 2019) state 

that varying operational conditions have two 

major effects on system degradation: Firstly, 

varying operational conditions influence the 

speed of degradation. Secondly, they lead to 

sudden signal changes and changepoints, 

which result in high variance of raw sensor 

readings. Thus, varying operational 
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conditions pose an obstacle to prognostics 

(Zhang, et al., 2020) and are considered to be 

a focal point for modern PdM modelling 

(Aydemir, Acar, 2018). 

According to (Do, Assaf, Scarf, & Iung, 

2019), prognostics incorporates three tasks:  

„State estimation‟ (estimate the current 

health or degradation state of the system 

based on historical data), „State prediction‟ 

(predict the health or degradation state for 

future periods based on historical data), 

„EoL‟ („End of Life‟) or „RUL prediction‟: 

Determine the RUL before failure or before 

exceeding the failure threshold for some 

identified degradation behaviour. The author 

highlights that RUL can refer to actual 

failure or remaining time until certain quality 

requirements of a product cannot be met. 

Databased RUL prediction can be 

formulated as a supervised (Aggarwal, et al., 

2018) or a semi-supervised machine learning 

(ML) problem (Yoon, et al., 2017). 

According to these authors, the high amount 

of required failure data to derive RUL labels 

for supervised prediction models is often not 

available in industrial practice.  

Health prognostics approaches in PHM are 

commonly classified into physics-based, 

knowledge-based and data-driven 

approaches (Bektas, Marshall, & Jones, 

2019). Physics-based models describe the 

phenomena of failure and degradation as 

physical or mathematical “white box”-

model. Although physics-based models can 

achieve high accuracy, their development is 

usually costly (Bektas, Marshall, & Jones, 

2019). Knowledge-based models collect 

identified degradation behaviors and failure 

events in a historic database and assess the 

similarity of a currently observed system 

state with the entries of a knowledge base 

(Sikorska, et al., 2011). Data-based 

approaches make use of the system condition 

monitoring (CM) data to derive transparency 

of the system health state and predict the 

RUL (Song, et al., 2018; Jia, et al., 2018; 

Wang, et al., 2017), further enabling to 

assess the uncertainty of the prediction 

(Benker, et al., 2020). Databased methods 

encourage the use of highly adaptable ML, 

including deep learning (DL) algorithms 

(Zhang, et al., 2018), in scenarios where 

large amounts of condition monitoring data 

are available and the system operation is 

subject to variations, partially unknown 

conditions or a variety of failure modes. 

For an overview of knowledge-based 

approaches, as well as advantages and 

limitations of data- and knowledge-based 

approaches, the reader is referred to (Ran, et 

al., 2019), where a survey of predictive 

maintenancesystems purposes and 

approaches is presented. Next, some 

additional work is briefly referred. 

The authors in (Malhotra, et al., 2016) 

propose an approach for combined health 

indicator (HI) estimation and RUL 

prediction. The publications by (Wang, 

2010; Wang, et al., 2008) are among the first 

research works to explicitly consider the 

effects of time-varying operating conditions 

on system degradation analysis.  

Li et al. (2019) model a dynamic, operation-

specific degradation rate as a state transition 

function based on Wiener process and time-

scale transformations, which capture the 

effect of operating conditions on the 

degradation curve. A measurement function 

smoothens the jumps in the degradation 

signal at operation condition changepoints 

by mapping each condition to a condition-

specific baseline. The approach proposed by 

the authors is evaluated on a simulated data 

set of bearings, which are subject to varying 

rotational speeds, as well as on a data set 

from an accelerated degradation 

experimental study of rolling element 

bearings.  

Luo et al. (2019) propose a deep learning 

approach for health estimation and fault 

detection of CNC machine tools operating 

under time-varying conditions. In a first step, 

the authors use a DL model composed of 

stacked auto encoders (AE) and a feed 

forward neural network to extract impulse 

responses from vibrational CM data. The 
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training and test data sets for the DL model 

are prepared manually by labelling whether 

randomly selected time windows contain an 

impulse response or not. In case of an 

impulse response, the vibration signal 

represents the reaction of the system to 

sudden forces and impacts during time-

varying machining processes. After training, 

the DL model is used to automatically 

identify impulse responses in the CM data. 

Subsequently, the first four natural 

frequencies and the damping reactions of the 

machine tools are extracted from two 

different impulse responses representing two 

different working conditions. The authors 

find that the natural frequencies barely 

change with varying operational conditions 

and thus are a robust feature for HI 

construction. The HI is computed as the 

cosine similarity in the space of extracted 

dynamic features comparing current 

observations with an initial vector 

representing the normal state. According to 

the authors, since the HI is based on 

operation-condition invariant features, the HI 

is robust to different working conditions. 

However, the approach is not capable of 

performing an operation-specific prediction 

of system health for future loads. In contrast 

to most other research, the approach was 

evaluated on a real industrial data set, 

composed of vibration signals from 288 days 

of industrial operation. 

Michau & Fink (2019) propose an 

unsupervised approach for system 

monitoring in a setting where a fleet of 

similar safety-critical systems is to be 

monitored over time. The training data for a 

specific system instance is enhanced by CM 

data from other instances of the fleet to 

enable CM early in a system‟s operational 

life. The authors use a variational 

autoencoder (VAE) architecture to model a 

shared latent space for the fleet, which is 

trained in an adversarial manner. A new loss 

function is designed to preserve instance-

specific behaviours in the shared latent 

space. The health prediction is framed as a 

one-class classification, which aims at 

predicting whether the CM data is faulty or 

healthy. The method is evaluated using a real 

data set form a fleet of 112 power plants 

operated in different geographical locations 

and under different operational conditions. 

The authors refer that their results show that 

the shared latent representation and feature 

alignment yield an efficient and 

unsupervised feature representation in a 

setting of complex systems subject to 

varying conditions, which is useful for 

downstream PHM modelling.  

The integrated optimization of production 

scheduling and machine maintenance has 

been known as a complex combinatorial 

optimization problem, in which heuristic or 

meta-heuristic approaches are commonly 

employed aiming to find some satisfied 

solutions in short time. With the advent of 

artificial intelligence and machine and deep 

learning, the application of scheduling rules-

based reinforcement learning (RL) to the 

field of scheduling has become possible 

(Wang, & Usher, 2005). However, little 

empirical research concerning the 

application of RL to integrated decision 

making of production scheduling and 

machine maintenance has been conducted 

(Zhai, Gehring, & Reinhart, 2021).  

In (Zhai, Gehring, & Reinhart, 2021) a 

machine degradation modelling under 

varying operational conditions, enabling 

subsequent integrated scheduling of 

maintenance and production (“PdM-

integrated production scheduling”: PdM-

IPS) is introduced. The underlying model is 

a conditional variational autoencoder 

(CVAE) that is used for calculating and 

quantifying the change of the machine health 

condition after producing specific product 

sequences. 

The gap that continues existing regarding 

contributions of integrated maintenance and 

production management approaches and 

systems motivated this work, in order to 

contribute to this scientific domain, and the 

proposed collaborative management system, 

based on a group decision-making approach 
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is briefly described and illustrated in the next 

sections. 

 

3. Collaborative management 

system based on a group 

decision making approach 
 

Collaborative management is of upmost 

importance in the current digital age, 

enabling and promoting a sustainable 

development of companies (Varela, Putnik, 

& Romero, 2022, 2023; Varela, et al., 

2022a,b, 2023). In this paper, a group 

decision-making architecture is proposed to 

enable collaborative management, and Fig 1 

shows and example of its application in an 

industrial company that includes three work 

centres (WC1, WC2, and WC3), which 

interact with each other and with the main 

company‟s factory, through its underlying 

brokering service, besides communicating 

with clients, and maintenance technicians.  

WC1
WC2

WC3

Clients and 
Maintenance 
technicians

ClientsClients

Clients

Main Factory
 Broker/ Server

Broker

 
Figure 1. Group decision-making architecture 

 

A collaborative management system (CMS) 

underlying the proposed group decision 

making architecture was developed to enable 

intra and inter factories and/ or work centres 

collaboration for jointly reaching integrated 

maintenance tasks and production operations 

scheduling, and an interface of the CMS is 

shown in the Figure 2, about an interface for 

processing a data fusion function of the 

DMCDM used in this work that will be 

further explained through an application 

example.  

This CMS enables a wide range of diverse 

kind of other management functions in 

industrial management, namely underlying 

the proposedGDM approach, which is 

carried out by usinga maintenance tasks 

processing methodology with three phases, 

based on a two-stage assessment method, 

whichmakes use of a DMCDM, as expressed 

in the Figure 3. 

The two-stage assessment method based on 

DMCDM was used in an industrial 

company, in the scope of a research project 

to enable the joint processing of maintenance 

and production orders information, and a 

case study is briefly described next in the 

section 4. 
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Figure 2. Collaborative management system‟s interface illustration: data fusion function 

 
Figure 3. Proposed maintenance tasks processing methodology based on a two-stage 

assessment method 
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4. Application example 
 

4.1 Maintenance tasks assessment 

methodology based on a DMDCM 
 

The maintenance tasks assessment 

methodology used in this work uses a 

DMCDM (Jassbi, et al., 2013; Varela, 

Arrais-Castro, & Ribeiro, 2018), by 

including two stages, for intra and inter work 

centres tasks evaluation and selection. 

1
st
 Stage) Intra work centres evaluation: 

Includes 6 steps, for normalizing/ fuzzifying, 

weighting, uncertainty filtering, and data 

aggregation or fusion, for ranking and 

selecting the maintenance tasks (Varela, 

Arrais-Castro, & Ribeiro, 2018). 

Step 1) Data acquisition and matrices 

construction: First,the definition of the 

evaluation criteria for processing the data 

about 3 moments: past, present and future, 

have to defined, and Figsures 4 to 6 show an 

example for the company‟s WC1, by using 

different kind of criteria, about: maintenance 

cost (MC), Lack of Production Quality 

(LPQ), Overall Equipment Effectiveness 

(OEE), Lack of Safety Indicator (LSI), Mean 

Time Between Failures (MTBF), Mean Time 

To Repair (MTTR), and Downtime (DT), for 

processing past and future maintenance 

tasks‟ data; and MC, along with Service 

Time (ST), and Lead Time (LT), for 

processing current maintenance tasks‟ data, 

which were applied for ranking a set of 6 

maintenance tasks (M1_1 to M1_6) of WC1.  

The current or present data is acquired, in 

real time from the shop floor, by using 

appropriate communication means and 

devices (Vieira, et al., 2018; Varela, et al., 

2021).

 

 
Figure 4. Past data matrix 

 

 
Figure 5. Present data matrix 

 

 
Figure 6. Future data matrix
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The future data can be obtained by applying 

some forecasting method, namely by using 

some machine learning approach (Putnik, et 

al. 2021) or be based on known real or 

estimated data. Prediction may also be 

performed using expert judgment or 

quantitative methods (forecasting), such as 

moving linear averages, quadratic averages, 

and other techniques. 

 

Step 2) Normalization/ fuzzification 
In the second step a normalization/ 

fuzzification processunderlying the 

DMCDM (Varela, Arrais-Castro, & Ribeiro, 

2018) was performed (Figure 7), toprocess 

imprecision by using fuzzy logic for 

criterion evaluation.To guarantee that values 

are numerical and comparable simple 

triangular membership functions were used 

to represent the acceptable criterion values, 

as all expected criteria fit in the “lower is 

better” and “higher is better” categories 

(Varela, & Ribeiro, 2003). This process is 

essential to enable values aggregation, and 

the simplest method consists on dividing a 

value by the maximum existing one in the 

set (when high values are favourable to the 

decision) or by the minimum (when low 

values are favourable, such as a cost) (Jassbi, 

et al., 2014). 

 

 

 

 

 

 

 

Figure 7. Normalization and fuzzification 

example for the MC criterion 
 

Step 3) Uncertainty filtering  

In order to filter uncertainty a method 

underlying the DMCDM referred in (Varela, 

Arrais-Castro, & Ribeiro, 2018) is used, 

which considers two parameters, accuracy 

and confidence to “filter” the membership 

function values. The accuracy parameter 

expresses deviations from nominal values 

and the confidence expresses the degree of 

trust on the data gathered.  

The logic of this filtering process is that if 

we do not trust an input source (e.g. 

confidence on data is only 80%) then the 

initial value must decrease proportionally 

(e.g. a value 10 would be reduced to 8), Thus 

accommodating deviations in the value, for 

example +3 or -3 from a value of 10. 

Let aijbe the accuracy associated with 

criterion j for MTi, representing a left or 

right deviation from the original value; when 

aij is zero it means we accept the gathered 

value without deviation errors. 

The confidence, wcj, is a percentage, as for 

example, we trust with 90% the values for 

“Maintenance Cost, MC”. 

Additionally, λ   [0,1], is a parameter that 

reflects the decision maker‟s attitude. Values 

close to zero indicate an optimistic attitude; 

higher values indicate a pessimist attitude.  

The accuracy rate, expressing the allowed 

deviation from the base values, is defined for 

each criterion, based on the associated data 

quality. The value also reflects the 

imprecision associated with the data 

gathering process. Based on the criteria and 

its associated confidence rates, the filtered 

imprecision values,      (e.g. acij), were 

calculated, as illustrated next for the MC 

criterion.

 

Hence, the adjusted membership value is calculated using the following formula (Varela, 

Arrais-Castro, & Ribeiro, 2018): 

                   (1) 
 

Where [a,b] is the inaccuracy interval: 
             

 

     (2)                     (3) 

(730-330) 

𝑓𝑢
𝑖𝑗
= 𝑤𝑐𝑗 ∗ (1 − λ ∗  max𝑥 [𝑎,𝑏   𝜇(𝑥 − 𝜇 𝑥𝑖𝑗   ∗ 𝜇(𝑥𝑖𝑗 ) 

𝑎

=  
𝑚𝑖 𝑛(𝐷 ,   &𝑖𝑓 𝑥𝑖𝑗 − 𝑎𝑖𝑗 ≤ 𝑚𝑖 𝑛(𝐷 

𝑥𝑖𝑗 − 𝑎𝑖𝑗 ,   &𝑖𝑓 𝑥𝑖𝑗 − 𝑎𝑖𝑗 > 𝑚𝑖 𝑛(𝐷 
 

𝑏

=  
𝑥𝑖𝑗 + 𝑎𝑖𝑗 ,   &𝑖𝑓 𝑥𝑖𝑗 + 𝑎𝑖𝑗 ≤ 𝑚𝑎 𝑥(𝐷 

𝑚𝑎 𝑥(𝐷 ,   &𝑖𝑓 𝑥𝑖𝑗 + 𝑎𝑖𝑗 > 𝑚𝑎 𝑥(𝐷 
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Using the function (1), along with (2) and 

(3), we are able to penalize input values, 

which display any of the two types of 

uncertainty, i.e. inaccuracies or lack of 

confidence on data, within an optimist or 

pessimist view from the decision maker.

  

 
Figure 8. Uncertainty filtering example for the MC criterion. 

 

Step 4) Weighting 

The step 4 enables to allow different weights 

for different temporal stages or criterion. 

Here we will use linear weighting functions 

to express the relative importance of criteria. 

These functions allow penalizing or 

rewarding bad or good levels of criteria 

satisfaction, i.e., instead of assigning single 

weights, we represent them using a function 

that depends on criteria satisfaction (eq. 4): 

          

                  (4)

     

where α defines the semantic importance of 

criteria („1‟ – very important, … „0‟ - 

ignored), and the β parameter defines the 

slope for the weighting function (a higher 

value or slope means a steeper function, thus 

a higher penalty, e.g. „1‟, and „0‟ – null 

penalization) to penalize, more or less, badly 

satisfied criteria. For example, if we assign 

to criterion Maintenance Cost, MC the 

values α=1 and β=0.67, we are defining this 

cost as a “very important” evaluation 

parameter with an average slope decrease. In 

this case, we want to reward the best quotes 

and penalize the bad ones (i.e. we want to 

reward lower costs). 

 
Figure 9. Weighting example for the MC. 

criterion 

 

Step 5) Aggregation 

After the four previous steps, we have a 

weighted vector for each criterion.  The step 

five is to determine the score (rating) for 

each time period, past, current and future, by 

using an approach that is illustrated for the 

past values about the MC criterion. The 

following results were obtained for historic 

information, using the data fusion equation 

5: 

 

          

         (5) 

 

 

 

 

 

 

 

 

 

𝑟𝑖 = 𝑠𝑢𝑚(
𝐿  𝑓𝑢

𝑖𝑗
 

 𝐿  𝑓𝑢
𝑖𝑗
 𝑛

𝑘=1

∗ 𝑓𝑢
𝑖𝑗
  

𝐿 (𝑓𝑢𝑖𝑗 = 𝛼 ∗  
1 + 𝛽 𝑓𝑢𝑖𝑗

1 +  𝛽
 ,  0 ≤ 𝛼,  𝛽 ≤ 1 
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Figure 10. Aggregation example for the MC criterion in the past data matrix. 

 

Step 6) Decision 

Once applying the steps underlying the 

DMCDM: normalization/ fuzzification, 

weighing, uncertainty filtering, and 

aggregation or data fusion to the past 

information of the WC1, it is possible to 

obtain the following rankings of the 

corresponding 6 maintenance tasks 

considered in this example: 

 

 
Figure 11. Decision matrices example for 

the MC criterion 

 

Next, we repeat the process underlying the 

DMCDM for future information, and in this 

case study the same criteria that have been 

used for past information evaluation were 

used for future data processing. Once having 

calculated the historical and prediction 

(future) scores for each alternative, we also 

need to evaluate the present status (present 

data).  

Evaluating the present or current data means 

to evaluate the proposals/ quotes that have 

been received and then fusion the respective 

information. For that purpose, the following 

criteria were used to evaluate present data: 

MC (Maintenance Cost), ST (Service Time), 

and LT (Lead Time), as previously shown.  

Summarizing, the final ratings of the 

maintenance tasks regarding past, future and 

present data, for the WC1, along with the 

final ratings, after final data weighting and 

fusion, for the WC1 are the following, 

correspondingly: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Past, future, present and final scores matrices examples for all the criteria in WC1 

 

WC1 - past 
 

WC1 - future 

WC1 - present WC1 – final scores 
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After the application of the same procedure 

that has been used for processing the 

information related to WC1 to the other two 

work centres (WC2, and WC3), by 

accomplishing the same main 5 steps of the 

DMCDM, the following final maintenance 

tasks‟ rankings have been obtained for these 

WC2 and WC3. 

Next, the two maintenance tasks, out of each 

WC, with the higher ratings shown next are 

selected for further processing in the 2
nd

 

stage of the maintenance data processing 

method. 

It is important to notice that despite M1_3 

not having good rankings in terms of 

historical data evaluation, it benefits from 

the greater importance that has been given in 

WC1 to the present or current data.

 

 

 

 

 

 

 

 

 

Figure 13. Final scores matrices examples for all criteria underlying past, present and future 

fused data about WC2 and WC3

Although, regarding the MT1_5, it reaches a 

higher rating than MT1_6, besides being a 

little worse positioned in terms of present 

data ratings, and with considerably worse 

position regarding future data, as the past 

data has an higher impact in the final rating 

than the provisional of future data, which in 

this case this favours MT1_5. 

 

2nd stage) Inter work centres evaluation 

In the 2ndstage, the DMCDN is repeated for 

the best rankings obtained in the 1st stage. 

Thus, follows the application of the same 

approach to the six maintenance tasks from 

the 1
st
 stage with a higher ranking to be 

further processed based on the application of 

the same DMCDM by the whole set of 

decision makers underlying the WC1, WC2, 

and WC3, to obtain the final list of the three 

maintenance tasks with higher priority for 

being jointly scheduled with the production 

orders, by repeating the application of the 

same main 5 steps that were previously 

applied on each WC. 

In this 2
nd

 stage of the method, a higher 

importance has been given to the past data, 

followed by present and less importance to 

the future data, to obtain the final overall 

rankings. 

 

Thus, the 3 maintenance tasks with better 

ratings - out of the set of the six maintenance 

tasks list including the two of each WC with 

a higher priority - that were reached for 

being jointly scheduled with the production 

orders are the following: MT2_2 (being 

redefined as simply M2, the M3_2, redefined 

as M3, and M1_5, redefined as M1). 

It is important to notice that eventually other 

criteria and importance could be defined for 

accomplishing this second stage of the 

decision method. 

 

 

 

 

 

 

WC2 – final scores WC3 – final scores 
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Figure 14. (a) Aggregated final scores‟ matrices about WC1, WC2, and WC2 from the 

application of the 1st stage and (b) the 2nd stage of the maintenance tasks assessment 

methodology

4.2 Collaborative scheduling: joint 

selected maintenance tasks and 

production orders programming 

 

The joint collaborative scheduling is 

performed next, based on the model 

presented in (Varela, et al., 2022b), to jointly 

program a current set of companies‟ 

production orders, along with the previously 

selected set of the three maintenance tasks 

with higher scores: MT2_2 that will now be 

defined simply as M2, MT3_2 as M3, and 

M1_5 as M1, related to the workcentres 

WC1, WC2, and WC3, correspondigly, and 

alternative possible solutions are shown in 

the Figs 15 to 17 below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Gantt chart about the best solution found for scenario 1 (about the minimization of 

the internal performance measure, makespan, Cmax) (adapted from, (Varela, et al., 2022b)) 

 

 

 

 

 

 

 

 

 

 

Figure 16. Gantt chart about the best solution found scenario 2 (about the minimization of 

external measures, tardy jobs, Nt, and maximum tardiness, Tmax) (adapted from, (Varela, et 

al., 2022b)) 
 

 

(a) Final scores of MTi from 1
st
 stage (b) Final rankings of MTi from 2

nd
 stage 
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Figure 17. Gantt chart about the best solution found for scenario 3 (about the combined (50%-

50%) minimization of both kind of measures, Cmax, and Nt) (adapted from, (Varela, et al., 

2022b))

These Gantt charts express possible 

alternative solutions for jointly scheduling 

the maintenance tasks and a set of ten lots of 

production orders (L1 to L10), based on the 

preference that is given by the decision 

making team regarding internal oriented 

performance measures (makespan) (Fig. 15) 

or external oriented ones (tardiness and tardy 

tasks) (Fig. 16) or a combination of internal 

and external measures (makespan and tardy 

tasks) (Fig. 17). Thus, the developed CMS 

provides additional flexibility by enabling 

tochoose the best suited application scenario, 

by using appropriate scheduling algorithms 

put available for processing the joints 

maintenance and production tasks,according 

to a given industrial context and 

management preferences or goals of the 

decision team. 

 

5. Final Discussion 
 

According to a study conducted, and by 

analysing a set of twenty publications about 

maintenance and production management a 

resume of main contributions from the 

literature were analysed, considering a set of 

seven main dimensions underlying this study 

about: dynamic, integrated, real-time, 

distributed, and predictivemanagement 

strategies (Varela, et al., 2023), along with 

time and condition based maintenance,as 

synthetized in the Table 1. 

 

Table 1. Resume of main dimensions of literature contributions and proposed approach 

Dimension 

 

Contribution 

Dynamic Integrated Real 

time 

based 

Distributed Predictive Time 

based 

Condition 

based 

(Aggarwal, et al., 

2018) 

X  X  X X X 

(Do, Assaf, Scarf, 

& Iung, 2019) 

X     X X 

(Aydemir, Acar, 

2020) 

X  X  X  X 

(Bektas, Marshall, 

& Jones, 2020) 

X  X  X   

(Benker, et al., 

2021) 

  X  X   

(Biondi, 

&Harjunkoski, 

2017) 

X X X  X X X 

(Lee, &Chen, 

2000) 

 X    X  

 

https://onlinelibrary.wiley.com/authored-by/ContribAuthorRaw/Lee/Chung%E2%80%90Yee
https://onlinelibrary.wiley.com/authored-by/ContribAuthorRaw/Chen/Zhi%E2%80%90Long
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Dimension 

 

Contribution 

Dynamic Integrated Real 

time 

based 

Distributed Predictive Time 

based 

Condition 

based 

(Ghaleb, 

Taghipour, 

Sharifi, & 

Zolfagharinia, 

2020) 

 X    X X 

(Kim N-H, An D, 

& Choi J-H, 

2017) 

  X  X X X 

(Li, et al., 2019) X  X  X X X 

(Luo, et al., 2019) X  X  X X X 

(Malhotra, et al., 

2016) 

  X  X X X 

(Michau & Fink, 

2019) 

X  X X X X X 

(Mosheiov, & 

Sarig, 2009) 

 X    X  

(Rahmati, 

Ahmadi, & 

Govindan, 2018) 

X X X    X 

(Sloan, & 

Shanthikumar, 

2000) 

 X    X X 

(Wang, & Yu, 

2010) 

 X    X  

(Yang, Ma, Xu, & 

Yang, 2011) 

X X    X  

(Zandieh, 

Khatami, & 

Rahmati, 2017) 

 X     X 

(Zhai, B. Gehring, 

& Reinhart, 2021) 

X X X  X X X 

This work X X X X X X X 

The analysed publications listed in the Table 

1 show that, on average, 3 to 4 of the 

dimensions proposed for carrying out the 

collaborative maintenance and production 

management are considered. Therefore, it is 

noticeable that this work is novel and that 

there is still a gap regarding this kind of 

contributions in the focused scientific and 

technological domain.  

 

6. Conclusion 
 

In this paper a group decision making 

(GDM) approach for maintenance tasks 

ranking and selection for being jointly 

scheduled with production orders was put 

forward. The proposed approach was 

implemented based on a two-stage 

assessment method, which makes use of a 

dynamic multi-criteria decision method 

(DMCDM). The DMCDM enables to merge 

and jointly process and analyse maintenance 

information regarding historical, current and 

provisional data, based on corresponding 

subsets of criteria, which are defined 

according to a group of decision makers that 

interact on its definition and application of 

the proposed underlying maintenance tasks 

processing methodology, which is accessible 

through a developed collaborative 

management system (CMS), accessible by a 

set of entities for enabling joint decision-
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making. The utilization of the proposed 

GDM approach was illustrated through an 

industrial example of application and it 

revealed to be promising in supporting joint 

maintenance and manufacturing orders 

processing, once permitting to rank and 

select a set of maintenance tasks with highest 

scores for being jointlyscheduled with 

production orders by using other 

functionalities included in the CMS. This is 

a novel contribution, as far as our 

knowledge, and based on the study 

conducted there are no similar contributions 

in the literature that enable a distributed and 

dynamic maintenance tasks assessment and 

selection, based on a DMCDM, for being 

further jointly programmed with production 

orders, through the CMS.Besides, the 

CMSincludes other functionality, namely for 

predicting maintenance key performance 

indicators, which are considered through 

criteria included in the prognostic data 

processed using the DMCDM, such as mean 

time before failure.  Thus, this works 

contributes to the maintenance and 

production orders management scientific 

domain, which continues lacking of 

contributions that enable collaborative 

decision-making, which is considered of 

upmost importance to promote a sustainable 

development of companies, and is supported 

by new technologies underlying the current 

digital age, being still necessary further 

developments and industrial applications to 

be explored. 
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