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A NUMERICAL METHOD FOR MODELLING THE
PARAMETERS Λ AND Δ OF AN EWMA CHART

Abstract: The exponentially weighted moving average chart (EWMA) is widely
employed in quality control to monitor a process or to evaluate historic data.
EWMA charts are designed to exhibit acceptable average run lengths both
when the process is in and out of control. This paper introduces a functional
technique for generating the parameters λ and Δ for such a chart that will have
specified average run lengths. The parameters are estimated using regression
plus an artificial neural network.
Keywords: ARL, average run length, EWMA chart, Exponentially Weighted
Moving Average chart, neural network, parameter estimation, SPC, statistical
process control

1. INTRODUCTION

Control charts are often employed to detect
changes in a process mean over time. In the traditional
approach, a sample is drawn and the sample mean ( x )
is calculated and plotted on a Shewhart X -chart having
control limits that depict the extremes of pure chance
fluctuations. A point inside the limits suggests that the
process  is  on  target.  While  a  Shewhart X -chart is
relatively easy to use and interpret, a cumulative sum
(CUSUM) chart (Woodall, 1986) is more capable of
detecting small changes in the process mean, as well as
indicating the time when the production line goes “out
of control”. Faster detection of significant changes
means tighter control if corrective action is to be taken
promptly.

Like Shewhart X  and CUSUM control schemes,
an exponentially weighted moving average (EWMA)
control scheme is easy to implement and interpret. The
ability of the EWMA chart to detect small shifts in the
process  mean  is  on  a  par  with  the  CUSUM  chart  and
superior to the Shewhart X -chart. It has been argued
(Lucas and Saccucci, 1990) that the EWMA chart is
simpler  to  explain  to  the  lay  user  than  the  CUSUM
chart, by noting its similarity to the classical Shewhart
X -chart.  Both  the  CUSUM  and  EWMA  charts  are

more suitable for single sampling schemes.A control
chart procedure has been proposed for which the
Shewhart X -chart,  the  cumulative  sum  chart  and  the
exponentially weighted moving average chart are
special cases. The procedures for constructing these
charts have been described by Champ et al. (1991).

Interest  in  the  EWMA  chart  is  reflected  in  the
numerous papers employing the technique. The
construction and performance of these charts has been
discussed (Chan and Zhang, 2000 and Jones et al.,
2001). Jensen at al. (2006) wrote a recent review of the
area, including EWMA charts, which should probably
be read in conjunction with Woodall (2000) who

examined a number of active questions on this topic.
For those interested in applications, particularly

within the health care industry see Woodall (2006).
What  was  omitted  from  these  works  was  a  method,
beyond the traditional nomogram (a graphical
technique) for estimating the charts parameters. It is this
problem that is addressed here. A spreadsheet is
introduced as an aid to rapid calculation of the desired
parameters.

The first section introduces the key notation, which
is used to introduce the generalised control chart.
Interest then centres on the Exponentially Weighted
Moving Average chart that is central to this work and is
defined employing two parameters λ and Δ.

The traditional approach to estimate these
parameters, via a nomogram is discussed; it is argued
that this method is inaccurate and out dated. A novel
approach is adopted using a polynomial to estimate the
first parameter (λ) and a neural network to estimate the
second (Δ). Finally a simple spreadsheet is developed to
evaluate both parameters in the hope that this simple
realisation will assist in the more ready adoption of this
line of attack.

The formal background to the problem is now
introduced.

2. BACKGROUND TO THE PROBLEM

Assume a sampled batch has a true mean μ.  Let  τ
be an acceptable target value for μ; therefore a batch is
acceptable if μ = τ. If a sample is rejected when, in fact,
the mean is μ = τ, this is unfair to the producer. This
producers  risk  is  also  referred  to  as  a  Type  I  error  or
simply  denoted  by  a  probability  α.  Conversely,  if  a
sample is accepted when, in fact, the mean is μ ≠ τ this
is unfair to the consumer. This consumer’s risk is also
referred  to  as  a  Type  II  error  or  simply  denoted  by  a
probability β. The difference between μ and τ is the drift
Δ (Δ = τ – μ). The sample size and control limits may be
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selected to obtain an in control average run length for a
specified Δ.

The average run length (ARL) for a given Δ gives
the average number of batches sampled until one is
rejected. The ARL is dependent on the selected
parameters and is an important factor in selecting a
control chart. The plan (the sample size and control
limits) is usually chosen so that the ARL is large when
the process is in control (acceptable ARL denoted by
La),  and  small  when  the  process  changes  by  Δ (out  of
control or rejected ARL denoted by Lr). The criteria are
acceptable risks of incorrect actions (α and β), expected
average quality levels (percent nonconforming)
reaching the customer and expected average inspection
loads (designed to detect nonconforming items).

The charts considered in this paper examine the
sample mean. In a process the mean might appear
acceptable, but there could be a change in the inherent
process variation. To monitor this variability a Shewhart
range chart should also be utilised (Cox, 1989).The
notation associated with a generalised chart is now
developed.

3. THE GENERALISED CONTROL
CHART

Assume that the individual random variables are
normally distributed with mean μ and variance σ2, that
is ( )2,~ smfx . Let tx  be the mean of a random
sample of n observations during the time interval, t.

Then tx  is normally distributed: ÷
÷
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The generalised procedure (Champ et al., 1991) is based
on the cumulative values,

{ }32110 ,max azaUaaU ttt -+-= - , 40 aU =
{ }32110 ,min bzbLbbL ttt ++= - , 40 bL -=

where the values of the parameters are chosen to be
non-negative (a2 and b2 must be positive).

For the upper chart the key parameters are
(a0,a1,a2,a3), for the traditional Shewhart chart these are
(0,0,1,0),  for the CUSUM (0,1,1,k) and for the EWMA
(0,1-λ,λ,0), adopting the usual notation, for further
details see Cox (1999).

The two-sided generalised control chart gives an
out of control signal as soon as either Ut ≥ a5 or Lt ≤ -b5.
For companion Shewhart X -charts, additional limiting
values a6 and  b6 are used to indicate whenever either
zt ≥ a6 or  zt ≤ -b6. These 14 parameters provide charts
with a great flexibility for detecting changes in μ. The

parameters are chosen to provide signals for a shift of a
given magnitude in μ with desired ARLs.

The parameters a4 and  b4 provide a head start
feature, designed to detect initial out of control
conditions more rapidly, negated by setting a4 = b4 = 0.
The head start, or fast initial response, enhances the
performance of the control chart. Initially, and after an
out of control signal, the cumulative values are
initialised at a4 and -b4.  If  the process is  in control,  the
head start parameters have little effect; however, for an
out of control process, faster indication is given with a
non-zero head start. Typically, 0 ≤ a4 ≤ a5 and a4 is often
placed at ½ a5 (similarly for b4). One-sided charts can be
produced by setting a5 = a6 = ∞, or b5 = b6 = ∞.

The parameters that produce the traditional EWMA
charts from the general scheme are now presented.

4.EXPONENTIALLY WEIGHTED
MOVING AVERAGE CHART

Following Lucas and Saccucci (1990), the
variables for an EWMA chart are

( ){ }ttt zUU ll +-= -11,0max , 00 =U
( ){ }ttt zLL ll +-= -11,0min , 00 =L

with 0 < λ ≤ 1. The weighting parameter, λ, is chosen to
give an appropriate average run length and is discussed
further below. In this case

( )
l

ls
-

F== -

2
999.01

55 n
ba .

Usually λ is chosen in the interval [0.05, 0.25] with
central values being more usual. Smaller values of λ are
employed to detect smaller shifts. For λ > 0.1 the
EWMA chart  is  often superior to the CUSUM chart  in
detecting large shifts (Montgomery, 2005).Some aids to
parameter estimation for an EWMA chart have been
published (Roberts, 1959). A nomogram is a graph with
several scales designed so that placing a ruler on the
plot cuts the scales at related values of the variables. It
is very much a graphical method with all its inherent
inaccuracies further jeopardised by employing a straight
edge to indicate the desired values. Roberts (1959)
employed simulation techniques while Crowder (1989)
numerically evaluated the integral equation to derive the
nomograms required. Since the nomogram approach
cannot be readily automated it is not studied in great
depth here. A partial solution of the problem addressed
here was presented by Lucas and Saccucci (1990) (see
their Table 3) who adopted a Markov chain approach,
following Brook and Evans (1972). Their scheme is
relatively complex and involves reference to additional
tables (Lucas and Saccucci, 1987). Unfortunately the
method is restricted to the parameters and ARL values
summarised in the table they present. The approach
adopted here is far more flexible.
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To illustrate the shortcomings of the
traditional nomogram, the estimates required to
produce the figure are calculated and the plot
presented

5. NOMOGRAM

In an early paper describing these charts (Roberts,
1959) produced a nomogram for the dimensionless case

l
l
-

==
2

355 ba  with n  =  σ =  1; this is re-

evaluated and presented in Figure 1. As in the original
work, for clarity, a logarithmic scale is adopted for the
ordinate. The evaluation of the ARL values needed to
produce this plot has been described elsewhere ((Cox,
1999) enhanced with Gaussian knot points for the
numerical  integration).  So  given  λ and  Δ,  Lr may  be
evaluated in this case. The range selected for λ and Δ
were chosen to match those of Roberts (1959). A great
deal of uncertainty is associated with estimating Δ from
this figure due to the proximity of the curves for λ.
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Figure 1 Lr(Δ) For Given λ

These nomograms have not been as readily adopted
as  those  for  the  CUSUM  chart  (Kemp,  1962).  The
reason is clear from the figure. The curves are so close
that parameter selection for the desired Lr is impractical.
If Δ is identified from the figure, the result is seen to be
effectively independent of λ. Recall that small values
are desirable 0.05 ≤ λ ≤ 0.25.

A superior method is now introduced, a polynomial
approach is used to estimate λ and a neural network to
estimate Δ.

6. A POLYNOMIAL TO
    ESTIMATE Λ

In  the  following  calculations,  for  each  value  of  a5
investigated 6,561 examples are examined with
0.01 ≤ λ ≤ 1 and 0.5 ≤ Δ ≤ 4. In each case 30 Gaussian
knot points were employed in the numerical integration
to provide the estimates (Cox, 1999). Defining

l
l
-

=
255 ca , setting c5 = 3 results in the case

presented in Figure 1. The dimensionless case is
retained by selecting n = σ = 1.  To  assist  in  parameter
selection for various values of c5, limits (Table 1) on La,
corresponding to Δ = 0, are employed.

Table 1 Acceptable Ranges For La Given c5
c5 1 1.5 2 2.5 3

La [6.3,
83]

[15,
221]

[44,
572]

[161,
1,632]

[741,
5,647]

Since La is independent of Δ (it corresponds to Δ = 0) it
provides an estimate of λ. The corresponding curves are
presented in Figure 2.
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Figure 2 - La(λ) For Given c5

To move away from the graphical approach it is
necessary to replace each of these curves with a
function. In view of their smooth profile a simple
polynomial is employed.

In  each  case  the  plots  exhibit  a  long  tail  with  a
slight increase in La as λ approaches 1.  In view of this
the  extreme  estimate  of  La, corresponding to λ = 1, is
adopted as the minimum acceptable value. The first
estimate of λ that corresponds to this estimate is denoted

λmax in Table 2 and provides a limit on the applicability
of the fitting polynomial, which is adequate for all the
cases considered here.

On logarithmic axis the curves are relatively easy
to fit. The logarithmic transform is also adopted to
provide consistency with the fits developed below. In an
attempt to clarify the situation, the coefficients that
estimate ln(λ)

given ln(La) are defined in the following
polynomial

ln(λ) = b0 + b1 ln(La) + b2 ln(La)2.
For given c5 these, and their range of applicability

(0, λmax), and the corresponding R2 value for the 60

points employed in the fit are presented in Table 2. As
an aid to interpreting the accuracy of any estimates
made some descriptive statistics have also been
included.

Table 2 Fitting Coefficients For λ Given La

c5 1 1.5 2 2.5 3 Maximum

λmax 0.64 0.51 0.38 0.27 0.18

b0 4.7807 6.0438 9.0176 13.6997 20.5488
b1 -3.4949 -3.0681 -3.4036 -4.0329 -4.8528
b2 0.3171 0.2055 0.1995 0.2114 0.225
R2 99.50% 99.80% 99.90% 99.90% 99.90%

Minimum -0.1337 -0.0732 -0.0548 -0.0371 -0.0249 -0.0249
Lower Quartile -0.0605 -0.0325 -0.0295 -0.0273 -0.0206 -0.0206

Median -0.0142 -0.0106 -0.0088 -0.0071 -0.0089 -0.0071
Upper Quartile 0.0583 0.0314 0.0275 0.0268 0.0248 0.0583

Maximum 0.1366 0.0769 0.0593 0.0532 0.0394 0.1366
Inter Quartile Range 0.1188 0.0639 0.057 0.0541 0.0453 0.1188
Standard Deviation 0.067 0.0376 0.0328 0.0296 0.023 0.067
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The R2 values support the reliability of the fit and
hence, for selected c5 and desired La, λ may be reliably
estimated. Further support, during the analysis stage,
was given by the proximity of the confidence limits to
the fitted line.Estimation of the remaining parameter, Δ,
will now be addressed via a neural network.

7. A NEURAL NETWORK TO
ESTIMATE Δ

The remaining problem is to employ the desired

values of La and Lr to estimate Δ. In this case La acts as
a  proxy  for  λ.  It  was  hoped  to  again  employ  a
polynomial approximation, however the complexity of
this problem is illustrated by Figures 3, 4, 5 and 6,
which preclude this.

These  figures  present  contour  plots,  with  Δ as  the
altitude. A polynomial fit would suffice if, for example,
the map exhibited a simple hill or valley, but
unfortunately this is clearly not the case. For example
with c5 = 1, contours of Δ against axis of La and Lr are
presented.
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Figure 3 Contours For Δ Given La and Lr For c5 = 1
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As with the estimation of λ logarithmic variables
are adopted in an attempt to clarify the situation.

Unfortunately the landscape while exhibiting some
linear features has a scalloped edge on the south face of

the peak (ln(Δ) > 1).
It  may  be  that  the  case  considered  (c5 = 1) was

unusual, however similar complexity is exhibited for the
extreme value of c5 = 3.
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Figure 5. Contours For Δ Given La and Lr For c5 = 3
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Figure 6 Contours For Δ Given ln(La) and ln(Lr) For c5 = 3

For completeness,logarithmic transformations are
again employed; hoping that some clear structure might
be exhibited.

It is tempting to assume that the irregular surfaces

depicted are a result of numerical imprecision. As a
check the number of knot points for the numerical
integration was doubled, this produced no discernable
difference.
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In view of this complex behaviour neural networks
are employed which are ideal for modelling in situations
like this. A simple neural network ((Cox, 2001) and
references therein) with 2 inputs (x1 and  x2), a single

hidden layer (x3,  x4 and  x5) used to predict a single
output (x6) may be constructed. The functions and
variables employed are displayed in Table 3.

                  Table 3 Functions Employed In The Neural Network
Input for x1 ( )rLx ln1 =

Input for x2 ( )aLx ln2 =

Sigmoid transfer function ( ) ( )x

x

e
ex

-

-

+

-
=

12
1

1f

Linear transfer function ( ) xx =0f

Transfer function for x3 ( )33,223,1113 uaxaxx ++= f

Transfer function for x4 ( )44,224,1114 uaxaxx ++= f

Transfer function for x5 ( )55,225,1115 uaxaxx ++= f

Transfer function for x6 ( ) )ln(66,556,446,3306 D=+++= uaxaxaxx f

The software utilised to calculate the weights and
thresholds is freely available in the public domain
(Goodman, 2001) (A downloadable zip file contains
executable, source code, a manual and an example. The

programme will run under the Windows operating
system, but does not possess any of the systems
flexibility in file handling and parameter input.). The
resulting coefficients are displayed in Table 4.
                 Table 4 Fitted Coefficients For The Neural
Network

c5 1 1.5 2 2.5 3

u3 0.2074 2.6386 1.4323 -2.0037 -11.5348

a1,3 -10.6578 -1.3392 1.0377 2.5924 1.4428

a2,3 -0.7335 -0.1137 -0.9012 -0.2697 1.1120

u4 1.9953 0.5096 8.7847 6.4794 15.5815

a1,4 0.3024 5.5010 2.6155 -1.1498 2.8244

a2,4 -0.9767 0.2699 -2.3520 -0.7061 -2.8026

u5 -0.7748 -3.0540 4.6535 -8.3862 15.7251

a1,5 1.9116 -0.6320 -0.9311 -1.4227 1.1294

a2,5 -0.4816 1.0026 -0.6254 1.6960 -2.1119

u6 1.0920 1.1709 0.2200 0.7376 0.9502

a3,6 2.2746 2.2561 -1.6853 0.0623 -1.2149

a4,6 -1.7222 -1.9634 -1.1741 1.6097 -0.8425

a5,6 -2.5229 2.6065 1.2613 2.0580 -1.1682
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As an indication of the value of the proposed
model, a general second order polynomial was also
fitted to the data. Although the fits resulted in excellent
R2 values, in all cases the fit was inferior to that

obtained from the neural network. For the case c5 = 1
using the 6,561 points, relevant descriptive statistics for
the fitting errors in the two cases are displayed in
Table 5

.
                          Table 5 Errors For The Neural And Polynomial Approximations For c5 = 1

Error in Δ Percentage Error in Δ

Neural Polynomial Neural Polynomial

Minimum -0.46 -0.81 -11 -37

Lower Quartile -0.03 -0.07 -2 -5

Median 0.00 0.01 0 1

Upper Quartile 0.05 0.15 2 7

Maximum 0.22 0.30 17 21

Inter Quartile Range 0.08 0.23 4 12

Standard Deviation 0.1033 0.2225

Thus for virtually every measure evaluated the
neural network is superior. The sole disadvantage of the
neural network approach is that it does not provide any
indication of expected errors that might be associated
with a parameter estimate. However some indication
may be obtained from the descriptive statistics included
in Table 5.

In general the estimates of λ are fairly accurate,
those  of  Δ slightly  less  so,  as  revealed  by  a  direct
solution of the numerical problem. The approximate
values from the polynomial (Table 2) and the neural
network (Table 4) provide starting values for the
simplex procedure (Nelder and Mead, 1965) to directly
solve  the  numerical  problem of  estimating  λ and  Δ for
given La, Lr and c5 (note that a1, a2, a5 all depend on λ).

The estimated acceptable average run length is
ARL(a0,a1,a2,a3,a4,a5) with density function ( )zf  and is
denoted by ARLa. While the rejection value corresponds
to ARL(a0,a1,a2,a3,a4,a5) with a shift in the density
function ( )D-zf  and is denoted by ARLr. The
relevant equations to derive the ARL are presented in
the appendix of Cox (1999). Here the procedure is
enhanced with Gaussian quadrature for the numerical
integration, employing 30 knot points. Algorithm’s to
calculate the Gauss-Legendre weights and abscissa are
readily available (Press et al., 1992). The estimates (λ,
Δ) are obtained by minimising the function
( ) ( )

r

rr

a

aa
L
ARLL

L
ARLL 22 -

+
-

 that was designed to

resemble a χ2 statistic and take into account the possible
difference in magnitude between La and Lr.

The difficulty in evaluating a precise value of Δ is
unsurprising given the proximity of the curves in
Figure 1. For instance, in the case c5 = 3, Lr = 3 and
La = 1000, the approximate values employing the
equations developed here are λ = 0.11 and Δ = 2.99 (see
Table 6 below). While the exact calculation gives
λ = 0.10 and Δ = 3.00, not a major discrepancy.

Since some of the equations are a little complex, a
spreadsheet aid to the calculation of λ and Δ is now
presented.

8. A SPREADSHEET TO
    EVALUATE Λ AND Δ

A spreadsheet was constructed to perform the basic
evaluations; the foreground is displayed in Table 6.

It is a simple matter to enter coefficients for other
values of c5. It evaluates the previously considered case
(c5 = 3, Lr = 3 and La = 1000).

9. CONCLUSIONS

EWMA charts are widely used in quality control,
both in the traditional industrial sector and within areas
such as health care (Woodall, 2006). They are
particularly efficient in detecting small shifts in the
process mean. Control charts being a graphical method
mean that a process shift of the plotted points is readily
observed.
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                   Table 6 Spreadsheet Values For c5 = 3

A simple polynomial plus a neural network
adopted here yields a series of equations, which can be
evaluated to quickly provide estimates of the parameters
λ and Δ for an EWMA chart with desired average run
lengths. The approach is reasonably accurate and more
immediate than the alternate method employing
nomograms. If greater precision is desired, then a larger
structure for the neural network could be employed, or a

direct numerical approach (as described above) adopted
using the polynomial and neural network estimates as
starting  points.  However  since  the  control  charts  are
only based on estimated values (underlying population
mean and standard deviation (Jensen et al., 2006)) then
excessive accuracy need not be demanded of the chart
parameters.

.
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