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NON-TRADITIONAL MACHINING PROCESS 

SELECTION – AN INTEGRATED 

APPROACH 

 
Abstract: With a large demand intended for the use of harder 

and difficult to machine materials like titanium, Inconel, high-

strength temperature resistant (HSTR) alloys etc. coupled with 

the need for high accuracy and desired surface finish have 

lead us to the situation where we find ourselves entangled in a 

large pool of Non-Traditional machining (NTM) processes. As 

such selecting a particular NTM process turns out to be a 

complicated job for a specific task. Meticulous selection of a 

NTM process involves a lot of criteria and hence multi-criteria 

decision making (MCDM) method is used to solve such 

problems. For the aid of decision maker such that the process 

of selection gets simplified an integrated method of fuzzy 

analytic hierarchy process (FAHP) with Quality function 

deployment (QFD) has been implemented for finding the 

significance of different technical requirements on a relative 

basis. Subsequently grey relational analysis (GRA) has been 

implemented for ranking out the alternatives and it was found 

that Electrochemical machining (ECM) overrules other NTM 

processes. A problem already existing in the literature has 

been picked up for the numerical illustration. The results 

obtained in the present research study are comparable with the 

existing literature and sensitivity analysis indicates the 

robustness of the proposed model. 

Keywords: NTM process selection, Fuzzy analytic hierarchy 

process, Quality Function Deployment, Multi-criteria 

decision making, Grey relational analysis 

 

 

1. Introduction1
 

 

Recent advances in the application of hard 

and difficult-to-machine materials used in 

turbine, aviation, tool and die making 

industries etc. has resulted in the 

development of Non-Traditional machining 

processes. Need is felt for machining of 

specific materials with high precision and 
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advanced surface finish and NTM processes 

turns out to be extremely useful for such 

applications as the energy in its direct form 

is used to remove material from the 

workpiece. It is worth mentioning that the 

development of new materials along with 

innovative and complex product design also 

tries to test the capabilities of traditional 

machining methods. Thus the enhanced and 

efficient process capabilities of NTM 

processes make them acceptable for the 

manufacturing industries.  
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Since in the last few decades, a large variety 

of feature rich NTM processes have 

developed significantly. So for the effective 

utilization it is very much essential to select 

a particular NTM process for a desired shape 

feature and work material combination as it 

remains a critical issue since the variety of 

NTM processes is large enough. As such a 

particular NTM process may be highly 

acceptable for a given set of requirements 

but it may fail to prove its acceptability and 

strength under different set of conditions. 

Consequently, a cautious approach in the 

selection of NTM process for a given 

machining problem is necessary keeping in 

view the following influential attributes: 

1) Physical as well as operational 

uniqueness of the NTM processes, 

2) Potential of machining different 

shape features on work material, 

3) Applicability of diverse processes 

to different types of materials, and 

cost factors of various NTM set up 

To address the critical issue of careful 

selection of NTM process, need is felt for 

developing a method such that best process 

can be selected for the requirement based 

application of product. Though there are 

numerous NTM processes to machine 

various intricate shape features in different 

work materials. However, in this paper, 

seven NTM processes, viz., ultrasonic 

machining (USM), abrasive jet machining 

(AJM), electrochemical machining (ECM), 

electric discharge machining (EDM), 

electron beam machining (EBM), laser beam 

machining (LBM) and plasma arc machining 

(PAM) are considered and they can machine 

various materials like aluminium, steel, 

super alloys, titanium ceramics etc. The 

NTM processes can also make precision 

holes, standard holes (with slenderness ratio 

≤ 20), standard holes (with slenderness ratio 

≥ 20), and precision thorough cavities and 

standard thorough cavities. They can also 

perform double contouring, surface of 

revolution, shallow and deep through cutting 

operations on different work materials. 

 

The presence of a large number of attributes 

which are not only conflicting in nature but 

is interdependent also; so the selection of a 

particular NTM for machining a particular 

product becomes an intricate decision. Since 

there are a lot of criteria which are both 

qualitative and quantitative in nature of 

which a number of criteria are subjective in 

nature. So, under such conditions the 

existence of large number of multi-objective, 

multi-attribute decision-making methods 

(MODM/MADM) comes to the rescue of 

decision maker. There are a number of 

research paper which have used various 

MCDM methods like analytic hierarchy 

process (AHP), analytic network process 

(ANP), technique for order performance by 

similarity to ideal solution (TOPSIS), multi-

objective optimization using ratio analysis 

(MOORA) etc. to solve the NTM process 

selection problem. But there exists a lack of 

evidence to suggest that a single method 

combining fuzzy AHP, QFD and grey 

relational analysis (GRA) have ever been 

used for solving such a problem. In the 

existing literature either AHP or QFD alone 

has been implemented for the NTM process 

selection (Chakraborty and Dey., 2006; 

2007) and calculations are entirely based on 

the crisp values of the expert’s judgment. 

But as far as the literature survey is 

concerned virtually there is no research 

paper available which has ever applied GRA 

for solving NTM process selection problem. 

Also it is worth mentioning that in the 

existing literature the priority values of the 

product characteristics have been assigned a 

definite value which can have a range of 

priority values. For finding the weight of 

product characteristics FAHP has been 

applied since there exists a range of values 

for it. No doubt there are few papers which 

do integrate the Fuzzy-AHP and QFD but in 

the present paper QFD has been 

implemented for the identification of the 

technical requirements whereas Fuzzy-AHP 

has been used to find weightage of 

individual technical requirements so that 

problem arising from the traditional QFD 
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model can be avoided. There are a number of 

criteria which can be either quatitative or 

qualitative in nature but are essential enough 

for NTM process selection. Also the inputs 

to a decision maker at times do come as 

subjective assessments by the experts (Wang 

et al., 2000) and in such cases fuzzy theory 

and GRA becomes essential for dealing with 

the involved subjectivity. Thus to find out 

the priority values of the product 

characteristics from a range of it, to identify 

the technical requirements combined with 

need to deal with the subjectivity the present 

study proposes a methodology which 

combines fuzzy AHP, QFD and GRA for 

evaluating and selecting the best possible 

NTM process.   

This paper is organized in the following 

parts – Section 2 gives a review of the 

related literatures, while Section 3 is about 

the Fuzzy AHP (FAHP) method and its 

involved relations, Section 4 explains the 

QFD process and its relevance to this paper, 

Section 5 briefs about the basics of grey 

theory, Section 6 describes the problem that 

needs to be solved using the method, Section 

7 provides an outline of how the QFD matrix 

is used to solve the purpose. A methodology 

has been proposed for solving the problem in 

Section 8 and Section 9 provides a case 

study for a numerical illustration and the 

result and discussion part has been dealt at 

length in Section 10. 

 

2. Review of the past research 
 

There have been a number of researchers 

who have used fuzzy methods for solving 

multi-attribute problems. Since the real life 

situations involve a lot of uncertainties and 

grey relational analysis handles it well. The 

grey theory is based on known degree of 

information (Julong, 1989) and its advantage 

over fuzzy theory is that it takes into 

consideration the condition of the fuzziness 

(Klir and Yuan, 1995; Zimmerman, 1996). 

Use of GRA is mostly intended for analyzing 

a variety of relationships amongst the 

distinct data sets and also for taking 

decisions in multi-criterion situations (Hsu et 

al., 2000, Tong and Wang, 2000).  

For NTM process selection past researchers 

have employed various methods like 

computer-aided selection procedure and the 

coding system and used a computer program 

alongwith a database in backend for the 

elimination process (Cogun, 1993; 1994). 

Further, a systematic methodology for NTM 

selection under conflicting situations 

incorporating AHP based expert system 

(Chakraborty and Dey, 2006), combined 

AHP and technique for order preference by 

similarity to ideal solution (TOPSIS) method 

(Yurdakul et al., 2003; Chakladar and 

Chakraborty, 2008), quality function 

deployment (QFD)-based expert system 

(Chakraborty and Dey, 2007) has been 

investigated. A well planned three level 

architecture incorporating a front-end a 

middleware and a database to support the 

backend for a web-based knowledge base 

system, digraph-based expert system 

(Chakladar et al., 2009), ANP (Das and 

Chakraborty, 2011), MOOSRA method 

(Chakraborty, 2011) and AHP-TOPSIS 

based NTM process selection (Choudhury et 

al., 2013) for selecting the best NTM process 

has also been investigated. Application, 

suitability and potential evaluation of mixed 

data method with the help of three examples 

for NTM process selection is being reported 

(Chatterjee and Chakraborty, 2013). A study 

providing a distinct but systematic approach 

in fuzzy and crisp environments to deal with 

a proper selection of the machining process 

for cutting of carbon structural steel is also 

investigated by the researchers (Temuçin et 

al., 2014). Fuzzy MCDM offer greater 

flexibility for handling complex situations 

having uncertainty (Soota, 2014). A decision 

making model with the help of a software to 

automate the NTM process selection with 

suitable graphic user interfaces (Prasad and 

Chakraborty, 2014), Fuzzy AHP and QFD 

based method for NTM process selection for 

drilling a hole in aluminum (Roy et al., 

2014) and applicability, suitability and 

computation using operational 
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competitiveness ratings analysis (OCRA) 

method for solving the nonconventional 

machining process selection have also been 

studied (Madic et al., 2015). A large number 

of literatures have been referred before 

identifying gaps: Grey relational theory with 

its strength of solving complicated 

interrelationship between multiple factors 

and variables, factor effect evaluation and 

multiple criteria decision (Chang and Yeh, 

2005; Yeh and Lu, 2000) has never been 

explored for NTM process selection.  

The conventional AHP pertains to subjective 

evaluation of criteria and hence cannot 

flawlessly imitate the human thinking style. 

Consequently to evade the involved risks the 

fuzzy AHP, an extension of AHP, helps in 

solving the hierarchical fuzzy problems (A. 

Özdağoğlu and Özdağoğlu, 2007). As such 

this technique shall be employed in this 

research study. 

Quality function deployment (QFD) offers 

an organized technique which aims at 

product planning and development. With the 

help of it, a product development team can 

undoubtedly stipulate the requirement of 

customer in order to evaluate each of the 

proposed products systematically so as to 

identify the degree to which it meets the set 

of customer’s requirements. 

Therefore, the integration of GRA, FAHP 

and QFD provides an unique combination of 

methodologies is being proposed for solving 

a well-known problem of NTM process 

selection. The results thus obtained, when 

compared with the results of the existing 

literature, validates the usefulness of the 

approach used in this paper. 

 

3. The Fuzzy AHP (FAHP) 

Method 
 

Of the various multi-criteria decision-

making (MCDM) tools, analytic hierarchy 

process (AHP) is a structured technique 

which offers subjective judgement of one 

criteria over the other and is based on 

mathematics and psychology. AHP uses 

eigenvalue approach for the pairwise 

comparison and was developed by Saaty 

(Saaty, 1980). The three fundamental steps 

of AHP are: 

1) forming a hierarchy by structuring a 

decision-making problem, 

2) making pairwise comparisons 

between alternatives and the 

criteria, 

3) synthesizing the priorities for 

developing an overall evaluation of 

decision alternatives. 

In the recent past a large number of work 

have been carried out for solving various 

decision making problems using AHP 

(Kahraman et al., 2003; Kulak and 

Kahraman, 2005; Chan et al., 2008, 

Dağdeviren and Yüksel, 2008). Whereas all 

these methods stresses on the determination 

of weights of various influencing attributes 

and are suitable enough for the analysis of 

alternatives which have many parameters. 

The knowledge and insight of an expert can 

be dealt in AHP but his thought cannot be 

perfectly reflected in crisp numbers. In order 

to overcome the above problem, fuzzy-AHP 

which integrates the fuzzy theory (Zadeh, 

1965) into AHP environment is 

implemented. To characterize the relative 

significance among hierarchy’s criteria, the 

fuzzy extension of AHP utilizes a nine level 

scale of judgments which are expressed 

through the triangular fuzzy numbers (TFN) 

(Zhu et al., 1999). Calculations using the 

TFNs are rather simple and easy. It is helpful 

also if the available information is subjective 

and imprecise in a particular decision-

making problem (Zimmerman, 1996; Chang 

and Yeh, 2002; Chang et al., 2007). The 

simplicity and effectiveness of TFN are 

useful enough for indicating strength of 

elements in the hierarchy (Das, 2010). In 

reality membership function of triangular 

form is generally used for representing the 

fuzzy numbers. And it can be represented by 

a triplet of real numbers K = (a, b, c), where 

a represents lower bound limit, c the upper 

bound limit and b being the median value. 

Existing literature provide a number of 
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scales, but here we are using the one which 

is rather easy and correspond better to the 

preference scale of crisp AHP as given in 

Table 1. 

 

Table 1. Fuzzy scale of preferences (Anagnostopoulos et al., 2007) 

Linguistic Variables Crisp 

AHP 

TFS Reciprocal TFS 

Equally 1 (1,1,1) (1,1,1) 

Equally to Moderately 2 (1,2,3) (1/3,1/2,1) 

Moderately 3 (2,3,4) (1/4,1/3,1/2) 

Moderately to Strongly 4 (3,4,5) (1/5,1/4,1/3) 

Strongly 5 (4,5,6) (1/6,1/5,1/4) 

Strongly to Very Strongly 6 (5,6,7) (1/7,1/6,1/5) 

Very Strongly 7 (6,7,8) (1/8,1/7,1/6) 

Very Strongly to Extremely 8 (7,8,9) (1/9,1/8,1/7) 

Extremely 9 (8,9,9) (1/9,1/9,1/8) 

 

The fuzzy membership function µK(y) is 

defined as 
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If there are two TFNs K1 and K2, where K1 = 

(a1 , b1 , c1 ) and K2 = (a2 , b2 , c2 ). Then 

their basic operational laws are as follows: 
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Due to the simplicity in usage of extent 

analysis technique, it has been used for 

estimating the synthetic degree value in this 

paper, which was originally introduced by 

Chang (Chang, 1996). Let Kij = (aij , bij , cij ) 

be a triangular fuzzy number (TFN). The 

steps involved for solving FAHP problem 

are as follows: 

Step1. Attributes are compared pairwise 

using the fuzzy numbers which are made of 

lower, mid and upper bound values in a 

particular level of hierarchy structure as 

shown in Figure 1. 

Step2. The fuzzy synthetic extent value for 

the ‘i 'th object is defined as: 
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Figure 1. Hierarchy of the criteria 

 

Step3. By comparing the values of  SEi the 

degree of possibility is then calculated and it 

can be better expressed as: 
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The highest intersection point P has p as the 

ordinate and it lies somewhere in between 

µSEj and µSEi as shown in Figure 2. To 

compare SEi and SEj, both the values of 

V(SEj≥SEi) and V(SEi≥SEj) are required. 

 

Step4. The minimum degree of possibility 

p(i) is then calculated as: 

Alternatives 

Criteria 

Ranking of NTM 

Processes 

PR E PC TC MA SA CI T&F 

USM AJM ECM EDM EBM LBM PAM 

Goal/Objective 
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 Assuming that: 
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Then the weight vector is given by: 
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where ),.....,3,2,1( niAi  are the n 

elements. 

 

Step5. With the help of normalization, the 

normalized weight vectors are then obtained. 

 
T

nApApApW ))(),.......,(),(( 21   (12) 

 

where W thus obtained is a non-fuzzy 

number (Figure 2). 

 
Figure 2. Highest intersection between µSEj and µSEi is at point P 

 

4. QFD Process 
 

The concept of Quality function Deployment 

(QFD) evolved in Japan in late 1960s and 

early 1970s (Chan and Wu, 2002) and it was 

practically first implemented by Mitsubishi 

Industries in 1972, later it was further 

developed by Akao (Akao, 1990). Other than 

providing an efficient approach for planning 

a product and its development based on 

technological and customer requirement 

QFD aids in better interpretation of 

qualitative criteria in objective form which 

in real effect helps in designing and 

manufacture of a product. 

The well-structured approach of QFD for 

product planning and development allows 

the development team to clearly specify the 

customer’s requirement and then to evaluate 

planned product individually in a systematic 

manner for a better identification of the 

degree of satisfaction of customers 

requirement (Hauser and Clausing, 1988; 

Wasserman, 1993). 

Implementation of QFD starts with the 

formation of House of Quality (HOQ) matrix 

as named by Hauser and Clausing (Hauser 

and Clausing, 1988). The relationship 

between voice of customers i.e. customer 

requirement (WHATs) and the quality 

characteristics or technical requirements 

(HOWs) (e.g. Chuang, 2001; Chan and Wu, 

2002; Govers, 2001) are displayed by HOQ. 

For the ease of HOQ application the 

correlation and planning matrices have been 

removed in the present methodology. A 

ai bi 
ci cj bj 

aj 

P V(SEj≥SEi) 

SEi SEj 

1 
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customer-centric and market-focussed 

approach of decision making emerges when 

key components of QFD involves WHATs, 

HOWs and WHYs (Cohen, 1995). Also 

product characteristics as those 

corresponding to voices of the customers 

while process characteristics corresponds to 

the technical requirement. ‘Customer is the 

king’ is a most common proverb that is used 

in today’s competitive world. So nowadays 

manufacturers put a great thrust to the 

customer’s requirements, and hence a 

company’s job in implementation of QFD is 

to integrate the customer requirements (CR) 

to technical requirements (TR) in a feasible 

manner. To start with the QFD, first list 

down the TRs which are most likely to affect 

the CRs. The customer’s insight on 

competitor’s product provides help to fix 

technical targets. And if in case, there remain 

any discrepancies between the customer’s 

perception and the QFD team’s correlation 

of CR and TR then it can be easily 

understood by QFD matrix. The response of 

a company to various customer requirements 

may be understood by having a look at the 

vertical part of QFD matrix. 

In the proposed paper, customer 

requirements are considered equivalent to 

the product characteristics while the 

technical requirements correspond to the 

process characteristics.  

 

5. Grey theory 
 

During the last few decades grey theory has 

gained a wide acceptance in all the fields 

relevant to human needs. Grey theory was 

originally developed by Prof. Julong in 1982 

and is very effective for solving problems 

which involves a degree of uncertainty.  

The grey system means that the amount of 

available information is not complete. Since 

the word ‘black’ means a total lack of 

information or no information while ‘white’ 

means that the complete information is 

known. Any grey system can be defined as a 

system which contains uncertain information 

presented by grey numbers, grey equations, 

grey variables, grey matrices etc. If the exact 

value of variable is unknown but the interval 

in which it will lie is known then that 

variable can be termed as a grey number. 

Say M=[p,q] is an interval number and 

M=[p,q]= {x| p≤x≤q, p≤q, p,q ε R}. If 

M=[p,q] and N=[r,s] represent two grey 

numbers then their basic mathematical 

operations are given by: 

1) M + N = [p+r,q+s] 

2) M – N = [p-r,q-s] 

3) M * N = 

min{pr,ps,qr,qs},max{pr,ps,qr,qs}] 

4) M/N=[min{p/r,p/s,q/r,q/s},max{p/r,p

/s,q/r,q/s}] 

5) h*M  = [hp,hq], where h is a constant. 

 

6. Problem description 
 

In order to validate the concatenated 

approach, a case study of a large 

manufacturing company is considered 

keeping in view that a similar sort of 

problem for NTM process selection was 

handled by earlier researchers (Chakraborty 

and Dey, 2007) where the authors tried to 

select NTM process based on condition that 

it can make precision holes, standard holes 

(with slenderness ratio ≤ 20), standard holes 

(with slenderness ratio ≥ 20), and precision 

thorough cavities and standard thorough 

cavities. They can also perform double 

contouring, surface of revolution, shallow 

and deep through cutting operations on 

different work materials. Also capital 

investment, tooling and fixtures, power 

requirement and tool consumption has been 

considered to be major hurdle for a given 

material and shape feature combination and 

hence they have considered as negative 

influencing factors. Also each NTM needs to 

satisfy two basic needs of material 

application and shape application, failing 

which its selection will be deterred. The two 

broad factors which forms the basis of 

analysis using QFD are product 

characteristics and process characteristics. 
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6.1. Product characteristics 
 

The various requirements of customer can be 

properly met if there exists a proper linking 

of varied characteristics of product which are 

not only achievable but are independent too. 

The product characteristics which have been 

considered in this paper are: 

a) Workpiece material (WPM) 

b) Shape feature (ShFe) 

c) Surface finish (SF) 

d) Surface damage depth (SDD) 

e) Tolerance (T) 

f) Corner Radii (CR) 

g) Production Time (PT) 

h) Product Economy (PE) 

All the above-mentioned product 

characteristics have been assumed to be 

independent of each other in order to avoid 

repetition in analysis. 

 

6.2. Process characteristics 
 

The extent to which the process 

characteristics of an optimal NTM process 

meet the desired product characteristic is 

highly important for its selection. Thus, the 

process characteristics that are accountable 

for achieving the required product 

characteristics are listed as follows: 

a) Material Application: It defines the 

frequency at which a particular 

NTM process is to be used for a 

given material. 

b) Shape Application: The suitability 

of specific NTM process for 

development of a particular shape 

feature on a specific material. 

c) Capital Investment: Involves the net 

capital expenditure made from 

installation to operation of NTM 

process for a requisite application. 

d) Tooling and fixtures: For various 

jobs there could be requirement of 

change in tooling and the kind of 

fixture required and these may 

involve a cost for changing those. 

e) Power Requirement: It is power 

rating of a particular NTM process. 

f) Efficiency: It is the ratio of the 

amount of energy available for 

material removal on NTM to the 

amount of input energy supplied to 

the machine. 

g) Process capability: It deals with the 

capability of a particular NTM 

process to achieve high precision 

and surface finish, maximize 

material removal rate, and minimize 

surface damage depth. In real sense 

it can be broken down into five 

parts viz. surface finish, surface 

damage depth, tolerance, corner 

radii and production time that a 

particular NTM process can 

provide. 

h) Tool consumption: This 

characteristic takes care of the tool 

changing requirement, which a few 

NTM processes may need, for 

machining a particular product and 

is also accountable for any cost 

involved with it. 

Thus, after determining all the eight 

technical requirements and proposed NTM 

processes pairwise comparison is made 

among requirements using fuzzy AHP and 

then QFD is implemented on the weights 

thus obtained for the technical requirements. 

QFD has been implemented to take care of 

the customers (product) requirement. A 

group decision making tool widely known as 

Delphi technique has been used for catering 

the purpose. Further TFNs have been used to 

tackle the ambiguities, if any, for the purpose 

of decision making. Calculations using TFNs 

are somewhat unpretentious keeping in view 

that TFNs are conducive enough for decision 

making problems if the available information 

is subjective and imprecise (Zimmerman, 

1996; Chang and Yeh, 2002; Chang et al., 

2007). The weights of all the technical 

requirements have been calculated by 

integrating fuzzy AHP with QFD. 

 

7. Proposed methodology 
 

The proposed methodology encompasses the 
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integration of FAHP and QFD for 

determining the weights of all the technical 

requirements followed with the application 

of GRA for ranking of the alternatives. The 

steps for the said purpose are outlined as 

follows; 

 

Step 1: Identify the various customer 

requirements i.e. product characteristics. 

Step 2: Identify all the technical 

requirements i.e. process characteristics. 

Step 3: By using FAHP the level of 

importance (normalized weight vectors) of 

various customer requirements i.e. product 

characteristics are calculated. 

Step 4: Using the expert knowledge of a 

QFD team a central relationship matrix is 

constructed 

Step 5: Level of importance of all the 

individual technical requirements i.e. process 

characteristics are calculated using equation: 

 





m

i

iijj cRw
1  

(13) 

 

where wj is level of importance of the jth 

technical requirement (j=1, 2,….,n); Rij is the 

quantified relationship between the ith 

customer requirement and the jth technical 

criteria in the central relationship matrix; and 

ci is the importance weighing of the ith 

customer requirement. 

Step 6: The level of importance of various 

technical requirement as calculated in 

previous step is then normalized using the 

equation: 

Step 7: Since the inputs for grey related 

methods are in intervals. Thus the TFNs can 

be converted into interval numbers using the 

α-cut technique (Dubois and Prade, 1980; 

El-Hawary, 1998) to build membership 

functions. Also, it better reflects the 

confidence levels of multiple decision 

makers (Das 2010). The α-cut technique 

takes the basis of resolution principle that 

any fuzzy set A can be retrieved as a union 

of its α-cuts and also follows the extension 

principle that: 

[f(A1…….Ar)]α = f(A1α…….Arα)      (15) 

By simply changing the value of α different 

interval can be made. These crisp values are 

obtained at the intersection points of 

horizontal α-line with triangular membership 

functions, for example, points A1 and A2 in 

Figure 3.  

 

 
Figure 3. Obtaining Interval data using α-cut 

technique from TFN 

 

Step 8: The numbers thus obtained in step 7 

are then normalized to bring the data in the 

range of 0-1. The method of normalization 

also helps in bringing the values to a single 

dimensionless platform. 

Step 9: In this step the weighted interval 

data is calculated by using the weights as 

obtained by integration of fuzzy AHP and 

QFD. Here the criteria weight is multiplied 

by the performance values of the alternatives 

under that criterion.  

Step 10: The reference number sequences 

are determined by using the weighted 

interval number value for each alternative. 

For a particular criterion and over all 

alternatives these values are the maximum 

values of all the lower end values as well as 

the maximum values of all the higher end 

values. The values thus obtained represent 

x 
A2 A1 

0 

1 

µ 

α 
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the maximum weighted value obtained in the 

data set for that attribute. 

In this step grey relational coefficient is to be 

found out between each alternative and the 

reference number sequence. For instance, 

say Xi(k) and Xj(k) are two sequences then 

their grey relational coefficient (GRCi,j(k)) is 

determined as follows: 

 

max

maxmin

,
)(

)(









k
kGRC

j

ji

 

 

(16)

  

where, )()()( kXkXk jij   

represents the absolute difference between 

two comparing sequences. while, 

)(maxmaxmax kj
lj
  and 

)(minminmin kj
lj
  , represents the 

maximum and minimum of the absolute 

differences of the comparing sequences. The 

distinguishing coefficient ‘ξ’ can have value 

in the range of 0 to 1, and it is the resolving 

power where lower the value of ‘ξ’ higher is 

the resolving power. Each value of GRCi,j(k) 

thus obtained lies between 0 to 1 and it 

represents the degree of closeness between 

two comparing sequences. 

Step 11: The grey relational coefficients thus 

obtained in the previous step are averaged to 

obtain the grey relational grade (GRGi,j), 

which is computed as follows: 

 





n

k

jiji kGRC
n

GRG
1

,, )(
1

 

 

(17)

  

where n is the number of responses. The 

average thus obtained represents the distance 

of each alternative from the nadir and thus 

higher value corresponds to the fact that the 

alternative is close to the optimal. 

Step 12: The alternatives are ranked in the 

descending order of their grey relational 

grades. 

 

 

 

8. Case study for illustration 
 

In order to validate the proposed 

methodology a case study of a large 

manufacturing company will now be 

analyzed. In a company, for improving the 

productivity simplicity in manufacturing is 

an essential aspect and in order to achieve 

that the stress of the company lies in 

choosing the best suitable NTM process for a 

combination of feature pertaining to shape 

that needs to be machined and the work 

material used. However, in order to find the 

best alternative of NTM process an expert 

committee mulls over seven different NTM 

processes. The processes considered are: 

Ultrasonic machining (USM), Abrasive jet 

machining (AJM), Electrochemical 

machining (ECM), Electric discharge 

machining (EDM), Electron beam machining 

(EBM), Laser beam machining (LBM) and 

Plasma arc machining (PAM). The 

methodology that has been adopted for the 

selection of appropriate NTM process has 

been dealt at length in the following section 

and is case specific to a company. 

Step 1: The product characteristics, i.e. the 

customer requirements, which have been 

identified for specific manufacturing 

processes are workpiece material (WPM), 

shape feature (ShFe), surface finish (SF), 

surface damage depth (SDD), tolerance (T), 

corner radii (CR), production time (PT) and 

product economy (PE).  

Step 2: In the same way, eight major 

process characteristics, i.e. technical 

requirements, have been identified which 

are: material application, shape application, 

capital investment, tooling and fixtures, 

power requirement, efficiency, process 

capability and tool consumption. Further 

process capability has been further sub-

divided in five different aspects viz. surface 

finish, corner radii, production time, 

tolerance and surface damage depth.  

On the basis of the opinions that have been 

derived from experts from academia, 

industry and researchers Table 2, which is a 
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square matrix is formed by inter-comparison 

of elements in a pairwise fashion. Here a 

total eight criterias which are product 

characteristics have been compared to obtain 

their weightages using the strengths of 

FAHP. These fuzzy assessment scores have 

been obtained from experts through the 

means of questionnaire and converting their 

ideas in terms of linguistic variables. 

 

Table 2. Fuzzy evaluation of product characteristics (criteria) 
Crite

ria 

WPM ShFe SF SDD T CR PT PE 

WP

M 

(1,1,1) (1,1,1) (1,2,3) (2,3,4) (1,2,3) (2,3,4) (2,3,4) (6,7,8) 

ShFe (1,1,1) (1,1,1) (1,2,3) (1,2,3) (1,2,3) (3,4,5) (3,4,5) (4,5,6) 

SF (0.33,0.5,1

) 

(0.33,0.5,1

) 

(1,1,1) (1,1,1) (1,1,1) (1,2,3) (1,2,3) (3,4,5) 

SDD (0.25,0.33,

0.5) 

(0.33,0.5,1

) 

(1,1,1) (1,1,1) (0.33,0.5,

1) 

(1,2,3) (1,2,3) (0.2,0.25,

0.33) 

T (0.33,0.5,1

) 

(0.33,0.5,1

) 

(1,1,1) (1,2,3) (1,1,1) (1,2,3) (1,2,3) (3,4,5) 

CR (0.25,0.33,

0.5) 

(0.2,0.25.0

.33) 

(0.33,0.5,

1) 

(0.33,0.

5,1) 

(0.33,0.5,

1) 

(1,1,1) (1,1,1) (1,2,3) 

PT (0.25,0.33,

0.5) 

(0.2,0.25.0

.33) 

(0.33,0.5,

1) 

(0.33,0.

5,1) 

(0.33,0.5,

1) 

(1,1,1) (1,1,1) (1,2,3) 

PE (0.12,0.14,

0.16) 

(0.166,0.2,

0.25) 

(0.2,0.25,

0.33) 

(3,4,5) (0.2,0.25,

0.33) 

(0.33,0.

5.1) 

(0.33,0.

5,1) 

(1,1,1) 

 

After this the equations from (5) to (8) are 

used on the fuzzy evaluation values outlined 

in Table 2, and hence the TFN values of 

eight criteria are obtained as follows: 

 

)134.0,072.0,042.0()7.67/1,59.94/1,58.126/1()08.9,84.6,35.5()(

)13.0,064.0,035.0()7.67/1,59.94/1,58.126/1()83.8,08.6,45.4()(

)13.0,064.0,035.0()7.67/1,59.94/1,58.126/1()83.8,08.6,45.4()(

)265.0,137.0,068.0()7.67/1,59.94/1,58.126/1()18,13,66.8()(

)16.0,08.0,04.0()7.67/1,59.94/1,58.126/1()83.10,58.7,11.5()(

)236.0,126.0,068.0()7.67/1,59.94/1,58.126/1()16,12,66.8()(

)398.0,222.0,118.0()7.67/1,59.94/1,58.126/1()27,21,15()(

)413.0,232.0,126.0()7.67/1,59.94/1,58.126/1()28,22,16()(

8

7

6

5

4

3

2

1

















PESE

PTSE

CRSE

TSE

SDDSE

SFSE

ShFeSE

WPMSE

 

 

Now according to the equation (9) the degree 

of possibility of SEj=(aj,bj,cj)≥ SEi=(ai,bi,ci) 

is obtained by comparing the values of SEi as 

calculated above. All the values of 

V(SEj≥SEi) are shown in Table 3. 

 

Table 3. Values of V(SEj≥SEi) 
V(SEj≥SEi) Value V(SEj≥SEi) Value V(SEj≥SEi) Value V(SEj≥SEi) Value 

V(SE1≥SE2) 1 V(SE2≥SE1) 0.9626 V(SE3≥SE1) 0.5097 V(SE4≥SE1) 0.1806 

V(SE1≥SE3) 1 V(SE2≥SE3) 1 V(SE3≥SE2) 0.5532 V(SE4≥SE2) 0.2263 

V(SE1≥SE4) 1 V(SE2≥SE4) 1 V(SE3≥SE4) 1 V(SE4≥SE3) 0.6622 

V(SE1≥SE5) 1 V(SE2≥SE5) 1 V(SE3≥SE5) 0.9407 V(SE4≥SE5) 0.6151 

V(SE1≥SE6) 1 V(SE2≥SE6) 1 V(SE3≥SE6) 1 V(SE4≥SE6) 1 

V(SE1≥SE7) 1 V(SE2≥SE7) 1 V(SE3≥SE7) 1 V(SE4≥SE7) 1 

V(SE1≥SE8) 1 V(SE2≥SE8) 1 V(SE3≥SE8) 1 V(SE4≥SE8) 1 
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Table 3. Values of V(SEj≥SEi) (continued) 
V(SE5≥SE1) 0.5944 V(SE6≥SE1) 0.02357 V(SE7≥SE1) 0.0235 V(SE8≥SE1) 0.0461 

V(SE5≥SE2) 0.6353 V(SE6≥SE2) 0.07051 V(SE7≥SE2) 0.0705 V(SE8≥SE2) 0.0946 

V(SE5≥SE3) 1 V(SE6≥SE3) 0.4977 V(SE7≥SE3) 0.4977 V(SE8≥SE3) 0.5464 

V(SE5≥SE4) 1 V(SE6≥SE4) 0.8502 V(SE7≥SE4) 0.8502 V(SE8≥SE4) 0.9229 

V(SE5≥SE6) 1 V(SE6≥SE5) 0.4588 V(SE7≥SE5) 0.4588 V(SE8≥SE5) 0.5022 

V(SE5≥SE7) 1 V(SE6≥SE7) 1 V(SE7≥SE6) 1 V(SE8≥SE6) 1 

V(SE5≥SE8) 1 V(SE6≥SE8) 0.9164 V(SE7≥SE8) 0.9164 V(SE8≥SE7) 1 

 

Then the minimum degree of possibility p*(i) 

of V(SEj≥SEi) where i,j=1,2,3,….,k is 

calculated:

 

0461.0)1,1,5022.0,9229.0,5464.0,0946.0,0461.0(min),,,,,,(min)8(

0235.0)9164.0,1,4588.0,8502.0,4977.0,0705.0,0235.0(min),,,,,,(min)7(

0235.0)9164.0,1,4588.0,8502.0,4977.0,0705.0,0235.0(min),,,,,,(min)6(

5944.0)1,1,1,1,1,6353.0,5944.0(min),,,,,,(min)5(

1806.0)1,1,1,6151.0,6622.0,2263.0,1806.0(min),,,,,,(min)4(

5097.0)1,1,1,9407.0,1,5532.0,5097.0(min),,,,,,(min)3(

9626.0)1,1,1,1,1,1,9626.0(min),,,,,,(min)2(

1)1,1,1,1,1,1,1(min),,,,,,(min)1(

76543218

*
86543217

*
87543216

*
87643215

*
87653214

*
87654213

*
87654312

*
87654321

*

















SESESESESESESESEVP

SESESESESESESESEVP

SESESESESESESESEVP

SESESESESESESESEVP
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The weight vector thus becomes: 
TW )0461.0,0235.0,0235.0,5944.0,1806.0,5097.0,9626.0,1(*   

 

Which after normalizing gives the weights of 

eight criterias: 

 

 
TW )0138.0,007.0,007.0,1779.0,0540.0,1525.0,2881.0,2993.0(  

 

Thus, the weights obtained for the eight 

product characteristics, i.e. the customer 

requirements viz. WPM, ShFe, SF, SDD, T, 

CR, PT and PE are 0.2993, 0.2881, 0.1525, 

0.0540, 0.1779, 0.007, 0.007 and 0.0138 

respectively. The weights thus obtained are 

non-fuzzy numbers. 

Step 3: Using the expert knowledge a 

central relationship matrix is constructed as 

detailed in Table 5. The weights of the 

customer’s requirement are used by QFD 

experts as a scale for finding the weights of 

technical requirements as detailed in next 

step. 

Step 4: Weights of individual technical 

requirements are then evaluated with the 

help of eqn 13 and the outcomes are detailed 

in Table 5. It is noteworthy to mention that 

from the production economy point of view 

capital investment, tooling and fixture, 

power requirement and tool consumption has 

been considered to be negatively influencing 

factors and hence have been assigned the 

negative values in the QFD matrix. The scale 

of relationship has been chosen on the basis 

of relationship that exists between the 

customer requirements versus technical 

requirement. Table 4 shows the scale values 

for the interrelationships existing between 

customer requirement and technical 

requirement. 

 

Table 4. Scale of interrelationship 
Scale value Significance 

0 No relationship 

1 Very weak relationship 

3 Slightly weak relationship 

5 Moderately Weak 

9 Strong relationship 
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Step 5: The levels of importance of various 

technical requirements are normalized to 

obtain degree of importance for the selection 

criteria i.e. weights for the technical 

requirements by using the eqn 14. 

Step 6: The grey relational method requires 

the inputs in the form of intervals. While the 

inputs as obtained from the experts are 

triangular fuzzy numbers (TFN) as shown in 

Table 6. The values have been rounded off to 

two decimal places. Here the criterions are 

material application(T1), shape application 

(T2), surface finish (T3), surface damage 

depth (T4), tolerance (T5), corner radii (T6), 

production time (T7), capital investment 

(T8), tooling and fixture (T9), power 

requirement (T10), efficiency (T11) and tool 

consumption (T12).  

The TFN values of criterions are converted 

to interval numbers by using α-cut 

technique, taking α=0.5. For instance, the 

TFN values for the alternative 3 under 

criterion 4 is converted to interval value as: 

Lower value of the interval = 0.087108 + 

(0.203517-0.087108)X0.5 = 0.145312 

Higher value of the interval = 0.448113 – 

(0.448113 - 0.203517)X0.5 = 0.325815 

And hence the interval value for alternative 2 

under criterion 3 is (0.145312,0.325815). In 

the same manner other interval value has 

been calculated and is shown in Table 7. 

Step 7: Normalization is done to bring the 

interval numbers in the standard form which 

is done by dividing the lower end and higher 

end values of an interval by the highest value 

under a criterion. For instance the criterion 3 

of alternative 3 has been normalized as 

(0.140782, 0.280195)/( 0.167365, 0.339536) 

= (0.414630, 0.825228). Other values of all 

the interval falling under different criterions 

have also been normalized in the same 

manner and is depicted in Table 8. 

Step 8: The weight of the criterions as 

obtained from step 6 are then used to find the 

weighted interval data and is obtained by 

multiplying the criteria weight with the 

interval data. For instance the weight of 

criteria 2 as obtained was 0.274546 and the 

performance interval of alternative 2 under 

criterion 2 is (0.270729, 0.369613). Thus 

(0.270729, 0.369613)X0.274546 = 

(0.074327, 0.101476). In the same manner 

other interval values have been calculated 

and is shown in Table 9. 

Step 9: The reference number sequence is 

determined by using Table 9. The reference 

number sequence is the maximum value of 

the weighted column in a criterion and is 

given in Table 10. 

Step 10: This step calculates the maximum 

distance between the reference point and 

each of the weighted interval value. The 

maximum distance for each alternative, 

falling under different criterions, to the ideal 

is identified as the largest distance 

calculation. The calculation for alternative 3 

under the criterion 4 is 

Distance34=(0.146803, 0.306875) - 

(0.116186, 0.260508) = (0.030617, 

0.046366). The maximum of these two 

values is taken i.e 0.046366 in this case. 

Similarly other distances are calculated and 

are shown in Table 11. 

For a particular alternative the reference 

point is the minimum of all minima and 

maximum of all maxima distance. So the 

reference point for alternative 1 is (0, 

0.1902). Table 12 lists the reference points 

for all the alternatives.  

The grey resolving coefficient is then found 

for all alternatives. The distinguishing 

coefficient ‘ξ’ can have value in the range of 

0 to 1, so its value is varied from 0.1 to 0.9 

with a gradient of 0.1. Table 13 and 14 

depicts the value of GRC for ξ = 0.1 and 0.2 

respectively. Similarly other values of GRC 

for ξ = 0.3 and 0.9. For instance, the GRC34 

for ξ = 0.1 has been calculated as follows 

using equation number (16) 

 

3177.0
2159.01.00463.0

2159.01.00
34 




GRC

 

 

where (0,0.2159) is the reference point for 

the alternative. 
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Step 11: The average of the grey relational 

coefficients gives total score of the 

alternatives and is used to rank the 

alternative. For instance, the extreme right 

columns of Table 13 and 14 give the average 

scores for all alternatives for ξ = 0.1 and 0.2 

respectively. 

Step 12: The alternatives are ranked in the 

descending order of their average grey 

relational coefficients as obtained in 

previous step. Table 15 gives the ranking of 

alternatives as obtained for different values 

of ‘ξ’. 

From Table 15 it can be inferred that the best 

results are obtained for ξ = 0.2. 

 

 

Table 5. QFD matrix for determining weights of technical requirements 
 Technical Requirement  
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WorkPiece 

Material 

9 1       0.2993 

Shape 

Feature 

1 9  5     0.2881 

Surface 

Finish 

1      9  0.1525 

Surface 

Damage 

Depth 

      5  0.0540 

Tolerance      1 9  0.1779 

Corner 

Radii 

 9  3   9  0.007 

Production 

Time 

 5    3 5  0.007 

Production 

Economy 

  -9 -5 -3 3  -3 0.0138 

Degree of 

Importance for 

selection criteria 

3.134 2.991 -

0.124 

1.393 -

0.041 

0.240 3.343 - 

0.041 

 

Normalized 

degree of 

importance for 

selection criteria 

28.769 27.454 -

1.141 

12.782 -0.38 2.207 30.687 -0.38 

 

Table 6. The performance of the alternatives according to the Technical Requirements 
Criterion USM AJM ECM EDM 

T1 (0.05,0.09,0.16) (0.03,0.06,0.13) (0.09,0.15,0.26) (0.09,0.15,0.26) 

T2 (0.08,0.1,0.15) (0.08,0.1,0.15) (0.13,0.25,0.43) (0.08,0.11,0.16) 

T3 (0.11,0.23,0.45) (0.1,0.21,0.41) (0.09,0.19,0.37) (0.03,0.06,0.14) 

T4 (0.08,0.19,0.42) (0.12,0.25,0.52) (0.09,0.20.45) (0.05,0.13,0.29) 

T5 (0.13,0.25,0.45) (0.05,0.09,0.17) (0.04,0.07,0.14) (0.11,0.19,0.38) 

 



 

86                                          M. K. Roy, A. Ray, B. B. Pradhan 

Table 6. The performance of the alternatives according to the Technical Requirements 

(continued) 
Criterion USM AJM ECM EDM 

T6 (0.07,0.14,0.27) (0.11,0.19,0.32) (0.1,0.17,0.29) (0.13,0.23,0.38) 

T7 (0.1,0.18,0.32) (0.04,0.07,0.15) (0.1,0.2,0.37) (0.1,0.17,0.31) 

T8 (0.06,0.11,0.2) (0.03,0.06,0.11) (0.1,0.2,0.4) (0.1,0.19,0.35) 

T9 (0.06,0.14,0.32) (0.05,0.12,0.27) (0.12,0.24,0.5) (0.13,0.27,0.54) 

T10 (0.09,0.2,0.43) (0.07,0.16,0.36) (0.1,0.24,0.5) (0.06,0.14,0.32) 

T11 (0.07,0.15,0.32) (0.06,0.15,0.28) (0.11,0.23,0.46) (0.08,0.15,0.29) 

T12 (0.09,0.2,0.45) (0.06,0.15,0.33) (0.05,0.12,0.28) (0.14,0.29,0.59) 

 

Criterion EBM LBM PAM  

T1 (0.09,0.15,0.26) (0.09,0.15,0.26) (0.12,0.25,0.47)  

T2 (0.08,0.11,0.16) (0.08,0.11,0.16) (0.1,0.22,0.38)  

T3 (0.09,0.17,0.33) (0.05,0.09,0.2) (0.03,0.06,0.12)  

T4 (0.04,0.1,0.25) (0.04,0.08,0.2) (0.03,0.05,0.12)  

T5 (0.11,0.21,0.37) (0.06,0.11,0.21) (0.05,0.08,0.13)  

T6 (0.06,0.1,0.18) (0.05,0.09,0.15) (0.06,0.09,0.13)  

T7 (0.04,0.08,0.16) (0.04,0.07,0.14) (0.13,0.23,0.38)  

T8 (0.11,0.2,0.37) (0.1,0.17,0.32) (0.04,0.07,0.13)  

T9 (0.04,0.1,0.23) (0.04,0.08,0.18) (0.03,0.05,0.14)  

T10 (0.08,0.15,0.32) (0.03,0.07,0.15) (0.03,0.05,0.11)  

T11 (0.03,0.07,0.14) (0.03,0.05,0.12) (0.1,0.22,0.46)  

T12 (0.04,0.1,0.25) (0.04,0.08,0.2) (0.03,0.06,0.15)  

 

Table 7. The performance values of the alternatives in the form of interval data 

 

 

Alternative T1 T2 T3 T4 T5 T6 

USM [0.07,0.12] [0.09,0.13] [0.17,0.34] [0.13,0.31] [0.19,0.35] [0.11,0.21] 

AJM [0.05,0.09] [0.09,0.13] [0.15,0.31] [0.18,0.38] [0.07,0.13] [0.15,0.25] 

ECM [0.12,0.2] [0.19,0.34] [0.14,0.28] [0.15,0.33] [0.06,0.1] [0.14,0.23] 

EDM [0.12,0.2] [0.09,0.13] [0.05,0.1] [0.09,0.21] [0.15,0.29] [0.18,0.3] 

EBM [0.12,0.2] [0.09,0.13] [0.13,0.25] [0.07,0.18] [0.16,0.29] [0.08,0.14] 

LBM [0.12,0.27] [0.09,0.16] [0.07,0.23] [0.06,0.14] [0.08,0.25] [0.07,0.16] 

PAM [0.19,0.36] [0.16,0.3] [0.04,0.09] [0.04,0.09] [0.06,0.11] [0.07,0.11] 

 

Alternative T7 T8 T9 T10 T11 T12 

USM [0.14,0.25] [0.08,0.15] [0.1,0.23] [0.14,0.31] [0.11,0.24] [0.15,0.33] 

AJM [0.05,0.11] [0.04,0.09] [0.09,0.2] [0.12,0.26] [0.1,0.21] [0.1,0.24] 

ECM [0.15,0.28] [0.15,0.3] [0.18,0.37] [0.17,0.37] [0.17,0.34] [0.09,0.2] 

EDM [0.14,0.24] [0.14,0.27] [0.2,0.4] [0.1,0.23] [0.12,0.22] [0.21,0.44] 

EBM [0.06,0.12] [0.16,0.29] [0.07,0.16] [0.11,0.23] [0.05,0.1] [0.07,0.18] 

LBM [0.06,0.11] [0.13,0.39] [0.06,0.2] [0.05,0.18] [0.04,0.09] [0.06,0.23] 

PAM [0.18,0.3] [0.05,0.1] [0.04,0.09] [0.04,0.08] [0.16,0.34] [0.04,0.1] 
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Table 8. Matrix showing the standardized performance intervals 
Alternative T1 T2 T3 T4 T5 T6 

USM [0.19,0.34] [0.27,0.37] [0.49,1] [0.35,0.8] [0.54,1] [0.35,0.68] 

AJM [0.13,0.26] [0.27,0.37] [0.45,0.91] [0.48,1] [0.19,0.37] [0.48,0.82] 

ECM [0.33,0.56] [0.56,1] [0.41,0.83] [0.38,0.85] [0.16,0.3] [0.45,0.75] 

EDM [0.33,0.56] [0.28,0.39] [0.14,0.3] [0.23,0.55] [0.43,0.82] [0.59,1] 

EBM [0.33,0.56] [0.28,0.39] [0.38,0.74] [0.19,0.46] [0.45,0.81] [0.27,0.46] 

LBM [0.33,0.75] [0.28,0.48] [0.2,0.66] [0.15,0.37] [0.24,0.7] [0.23,0.53] 

PAM [0.51,1] [0.46,0.88] [0.13,0.26] [0.1,0.22] [0.18,0.3] [0.24,0.36] 

 

Alternative T7 T8 T9 T10 T11 T12 

USM [0.45,0.82] [0.21,0.4] [0.25,0.57] [0.39,0.86] [0.32,0.69] [0.33,0.74] 

AJM [0.18,0.36] [0.11,0.22] [0.21,0.48] [0.31,0.71] [0.28,0.6] [0.23,0.54] 

ECM [0.5,0.94] [0.38,0.77] [0.45,0.92] [0.46,1] [0.5,1] [0.2,0.46] 

EDM [0.45,0.8] [0.37,0.69] [0.48,1] [0.28,0.62] [0.34,0.64] [0.48,1] 

EBM [0.19,0.38] [0.4,0.73] [0.18,0.4] [0.3,0.63] [0.14,0.3] [0.17,0.4] 

LBM [0.18,0.35] [0.34,1] [0.14,0.51] [0.14,0.48] [0.11,0.27] [0.13,0.52] 

PAM [0.6,1] [0.14,0.26] [0.1,0.23] [0.1,0.21] [0.47,0.99] [0.1,0.24] 

 

Table 9. Matrix showing the weighted Standardized Interval data 
Alternative T1 T2 T3 T4 T5 T6 

USM [0.05,0.1] [0.07,0.1] [0.15,0.31] [0.11,0.25] [0.17,0.31] [0.11,0.21] 

AJM [0.04,0.07] [0.07,0.1] [0.14,0.28] [0.15,0.31] [0.06,0.11] [0.15,0.25] 

ECM [0.09,0.16] [0.15,0.27] [0.13,0.25] [0.12,0.26] [0.05,0.09] [0.14,0.23] 

EDM [0.09,0.16] [0.08,0.11] [0.04,0.09] [0.07,0.17] [0.13,0.25] [0.18,0.31] 

EBM [0.09,0.16] [0.08,0.11] [0.12,0.23] [0.06,0.14] [0.14,0.25] [0.08,0.14] 

LBM [0.09,0.22] [0.08,0.13] [0.06,0.2] [0.05,0.11] [0.07,0.21] [0.07,0.16] 

PAM [0.15,0.29] [0.13,0.24] [0.04,0.08] [0.03,0.07] [0.05,0.09] [0.07,0.11] 

 

Alternative T7 T8 T9 T10 T11 T12 

USM [0.14,0.25] [-0.002,-

0.004] 

[0.03,0.07] [-0.001,-

0.003] 

[0.01,0.02] [-0.001,-

0.002] 

AJM [0.05,0.1] [-0.001,-

0.003] 

[0.03,0.06] [-0.001,-

0.003] 

[0.01,0.01] [-0.0009,-

0.0021] 

ECM [0.15,0.3] [-0.004,-

0.009] 

[0.06,0.12] [-0.002,-

0.004] 

[0.01,0.02] [-0.0008,-

0.0018] 

EDM [0.14,0.2] [-0.004,-

0.008] 

[0.06,0.13] [-0.001,-

0.002] 

[0.01,0.01] [-0.0018,-

0.0038] 

EBM [0.06,0.1] [-0.005,-

0.008] 

[0.02,0.05] [-0.001,-

0.002] 

[0,0.01] [-0.0006,-

0.001] 

LBM [0.06,0.1] [-0.004,-

0.011] 

[0.02,0.06] [0,-0.02] [0,0.01] [-0.0005,-

0.002] 

PAM [0.18,0.3] [-0.002,-

0.003] 

[0.01,0.03] [0,0] [0.01,0.02] [-0.0004,-

0.0009] 
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Table 10. Reference Number sequence 
 T1 T2 T3 T4 T5 T6 

Max (Min) 0.1475 0.1530 0.1512 0.1468 0.1664 0.1805 

Max (Max) 0.2876 0.2745 0.3068 0.3068 0.3068 0.3068 

       

 T7 T8 T9 T10 T11 T12 

Max (Min) 0.1836 -0.0012 0.0616 -0.0003 0.011 -0.0003 

Max (Max) 0.3068 -0.0025 0.1278 -0.0008 0.022 -0.0008 

 

Table 11. Maximum distances from alternatives to the reference number vector 
Alternative T1 T2 T3 T4 T5 T6 

USM 0.190 0.173 0 0.061 0 0.098 

AJM 0.213 0.173 0.026 0 0.192 0.053 

ECM 0.126 0 0.053 0.046 0.216 0.077 

EDM 0.126 0.167 0.215 0.138 0.055 0 

EBM 0.126 0.167 0.08 0.166 0.057 0.166 

LBM 0.071 0.143 0.103 0.194 0.093 0.144 

PAM 0 0.032 0.228 0.238 0.214 0.196 

       

Alternative T7 T8 T9 T10 T11 T12 

USM 0.055 0.001 0.055 0.002 0.006 0.001 

AJM 0.195 0 0.065 0.001 0.008 0.001 

ECM 0.029 0.006 0.01  0.003 0 0.0008 

EDM 0.061 0.005 0 0.001 0.008 0.003 

EBM 0.189 0.005 0.076 0.001 0.015 0.0006 

LBM 0.198 0.008 0.063 0.001 0.016 0.001 

PAM 0 0.0004 0.097 0 0.0006 0 

 

Table 12. Reference points for all the alternatives 
Alternative Min Max 

USM 0 0.1902 

AJM 0 0.2135 

ECM 0 0.2159 

EDM 0 0.2155 

EBM 0.0006 0.1891 

LBM 0.001 0.1987 

PAM 0 0.238 

 

Table 13. Weighted distances to reference point taking ξ = 0.1 
Alternative T1 T2 T3 T4 T5 T6  

USM 0.09 0.099 1 0.235 1 0.162  

AJM 0.091 0.11 0.443 1 0.1 0.284  

ECM 0.146 1 0.287 0.318 0.091 0.134  

EDM 0.146 0.114 0.091 0.134 0.282 1  

EBM 0.135 0.105 0.197 0.105 0.257 0.106  

LBM 0.23 0.128 0.17 0.097 0.184 0.127  

PAM 1 0.421 0.094 0.091 0.1 0.108  
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Table 13. Weighted distances to reference point taking ξ = 0.1 (continued) 
Alternative T7 T8 T9 T10 T11 T12 Avg. 

USM 0.256 0.905 0.256 0.886 0.734 0.908 0.544 

AJM 0.098 1 0.245 0.918 0.706 0.948 0.495 

ECM 0.423 0.776 0.67 0.878 1 0.961 0.564 

EDM 0.259 0.801 1 0.933 0.73 0.881 0.531 

EBM 0.094 0.79 0.205 0.953 0.567 1 0.376 

LBM 0.096 0.726 0.251 1 0.579 0.997 0.382 

PAM 1 0.982 0.196 1 0.973 1 0.58 

 

Table 14. Weighted distances to reference point taking ξ = 0.2 
Alternative T1 T2 T3 T4 T5 T6  

USM 0.167 0.18 1 0.381 1 0.278  

AJM 0.167 0.198 0.614 1 0.182 0.443  

ECM 0.255 1 0.446 0.482 0.167 0.359  

EDM 0.255 0.205 0.167 0.237 0.439 1  

EBM 0.235 0.187 0.325 0.188 0.405 0.189  

LBM 0.368 0.222 0.285 0.174 0.306 0.222  

PAM 1 0.593 0.173 0.167 0.182 0.195  

        

Alternative T7 T8 T9 T10 T11 T12 Avg. 

USM 0.408 0.95 0.408 0.94 0.847 0.952 0.626 

AJM 0.179 1 0.393 0.957 0.828 0.973 0.578 

ECM 0.594 0.874 0.802 0.935 1 0.98 0.658 

EDM 0.412 0.889 1 0.965 0.844 0.937 0.613 

EBM 0.169 0.881 0.336 0.976 0.721 1 0.468 

LBM 0.171 0.838 0.396 1 0.729 0.999 0.476 

PAM 1 0.991 0.327 1 0.986 1 0.634 

 

Table 15. Ranking of alternatives as obtained for different values of ‘ξ’ 
Rank Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 

ξ 

0.1 PAM ECM USM EDM AJM LBM EBM 

0.2 ECM PAM USM EDM AJM LBM EBM 

0.3 ECM USM PAM EDM AJM LBM EBM 

0.4 ECM USM PAM EDM AJM LBM EBM 

0.5 ECM USM EDM PAM AJM LBM EBM 

0.6 ECM USM EDM PAM AJM LBM EBM 

0.7 ECM USM EDM PAM AJM LBM EBM 

0.8 ECM USM EDM PAM AJM LBM EBM 

0.9 ECM USM EDM PAM AJM LBM EBM 

 

9. Result and discussions 
 

The ranks of various NTM processes have 

been found for different values of ‘ξ’. Table 

15 gives the ranking of alternatives as 

obtained for different values of ‘ξ’. From 

this table it can be inferred that ECM is the 

best suited NTM process for the said 

application. But when the result thus 

obtained was compared with result of 

referred literature (Chakraborty and Dey, 

2007) then certain conflicts have been noted. 
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In the referred literature the ranking of 

alternatives as performed by authors, using 

only QFD, are 

ECM>PAM>USM>EDM>LBM>EBM>AJ

M, while our ranking for ξ = 0.2 is 

ECM>PAM>USM>EDM>AJM>LBM>EB

M. Thus the ranking AJM, LBM and EBM 

needs to analyzed in detail since between the 

literature and our result has two main 

conflicts and they are: 

a) LBM is given as fifth best 

compared to our ranking which has 

AJM at fifth place 

b) EBM has been said to be sixth best 

compared to our ranking which 

places it at the last. 

In order to confirm the above-mentioned 

outcomes, we need to perform certain 

mathematical analysis and to validate results 

of present research a sensitivity analysis will 

be done for the ranking values corresponding 

to ξ = 0.2. 

 

9.1. Mathematical analysis 
 

The fact that AJM>LBM on the twelve 

criteria, performance of AJM in seven 

criteria is better than performance of LBM 

on same criteria while it is poor on rest five 

criteria. Now taking the help of priority 

weights as determined by fuzzy AHP and 

QFD to perform a short mathematical 

analysis. In this analysis we multiply the 

middle value of the performance scores to 

the priority weights, as: 

 

0.28*(0.06-0.15) + 0.27*(0.1-0.11) + 0.3*(0.21-0.09) + 0.3*(0.25-0.08) + 0.3*(0.09-0.11) + 

0.3*(0.19-0.09) + 0.3*(0.07-0.07) + (-0.011)*(0.06-0.17) + 0.12*(0.12-0.08) + (-0.003)*(0.16-

0.07) + 0.022*(0.13-0.05) + (-0.003)*(0.15-0.08) = 0.094.  

 

Similarly, for the fact that AJM>EBM on the 

twelve criteria, performance of AJM in eight 

criteria is better than performance of EBM 

on same criteria while it is poor on rest four 

criteria. Now taking the help of priority 

weights as determined by fuzzy AHP and 

QFD to perform a short mathematical 

analysis. So, on analysis as done above the 

difference between AJM and EBM comes 

out to be 0.024.  

So the differences between AJM and 

LBM/EBM comes out to be 0.094 and 0.024, 

which are not a big difference and hence in 

our ranking AJM leads both LBM and EBM. 

 

9.2. Sensitivity analysis 

 

A mathematical model as proposed by 

Bhattacharya (Bhattacharya et al., 2002) will 

be used for the purpose. The governing 

equation for it is: 

 
    iii MRMPFMSI   1  (18) 

 

where 

 

  




n

ii

i

MRFMRF
MRM

1

1

1   

(19) 

 

where MRM is the material removal 

measure, MRF is the material removal 

factor, PFM is the performance factor 

measure, SI is the sensitivity index, α is the 

performance factor decision weight, and n is 

the number of alternatives. 

The PFM values, i.e. the priority value of 

each alternative is taken as the performance 

measure value as obtained from average grey 

relational grade corresponding to ξ = 0.2. 

The MRF values are the standard material 

removal rate (MRR) values for the different 

alternatives, and MRMs have been designed 

in such a way that, as shown in equation 

(19), to obtain a non-dimensional quantity. 

By doing this we can combine MRR values, 

i.e. cardinal measures, with the PFM  values, 

i.e. ordinal measure, as shown in equation 

(18). The units of MRF are mm3/min, 

whereas MRM values are non-dimensional 

entities. Selection of proper value of α is an 

important issue which needs to be jointly 
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decided by design engineer, production 

manager and maintenance engineer. The 

value of α determines the degree to which 

importance is provided among the measures 

of material removal and performance factor 

by the judgement maker and thereby its 

effect can be properly analyzed on the 

sensitivity plot. So by using equation (18) 

variation of SI with α can be plotted for all 

alternatives as shown in Figure 4. 

 
Figure 4. Graphical display of alternatives based on sensitivity analysis 

 

In Figure 4, the x-axis represents the 

variation in value of α while the y-axis 

represents the variation in value of SI. So 

from this plot and for α > 0.8 the order of 

NTM processes are similar to that found by 

us using fuzzy AHP, QFD and GRA i.e. 

ECM>PAM>USM>EDM>AJM>LBM>EB

M. 

 

10. Conclusions 
 

In the present analysis, the researchers have 

used the specialties of fuzzy AHP, 

amalgamated with the benefits that can be 

derived from QFD for determining the 

weightages of various technical and 

customer requirements. However a final 

ranking of the various NTM processes have 

been evaluated using the grey theory. The 

fuzzification process provides a greater 

flexibility to the decision makers by taking 

care of uncertainties. However the proposed 

hybrid and integrated method has never been 

reported before for the said problem and it’s 

an essence of present research. The future 

research scope may include the development 

of an expert system that incorporates the 

present methodology, however the 

methodology can be further developed and 

fuzzified parameters can be used in QFD too 

for adding a greater flexibility. Last but not 

the least, the present methodology can also 

be tried in some other form of selection 

processes viz. material selection, robot 

selection etc., and it can be a future scope of 

present work. 

 

References: 
 

Akao, Y. (1990). Quality function deployment: integrating customer requirements into product 

design. Cambridge, MA: Productivity Press.  

Anagnostopoulos, K. P., Gratziou, M., & Vavatsikos, A. P. (2007). Using the fuzzy analytic 

hierarchy process for selecting wastewater facilities at prefecture level. European 

Water, 19(20), 15-24. 



 

92                                          M. K. Roy, A. Ray, B. B. Pradhan 

Bhattacharya, A., Sarkar, B., & Mukherjee, S. K. (2002). Material handling equipment 

selection under multi-criteria decision making (MCDM) environment. Industrial 

Engineering Journal, 31(6), 17-25. 

Chakladar, N. D., & Chakraborty, S. (2008). A combined TOPSIS-AHP-method-based 

approach for non-traditional machining processes selection.Proceedings of the Institution of 

Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(12), 1613-1623. 

Chakladar, N. D., Das, R., & Chakraborty, S. (2009). A digraph-based expert system for non-

traditional machining processes selection. The International Journal of Advanced 

Manufacturing Technology, 43(3-4), 226-237.. 

Chakraborty, S., & Dey, S. (2007). QFD-based expert system for non-traditional machining 

processes selection. Expert Systems with Applications, 32(4), 1208-1217. 

Chakraborty, S., & Dey, S. (2006). Design of an analytic-hierarchy-process-based expert 

system for non-traditional machining process selection. The International Journal of 

Advanced Manufacturing Technology, 31(5-6), 490-500. 

Chakraborty, S. (2011). Applications of the MOORA method for decision making in 

manufacturing environment. The International Journal of Advanced Manufacturing 

Technology, 54(9-12), 1155-1166. 

Chan, L. K., & Wu, M. L. (2002). Quality function deployment: A literature review. European 

Journal of Operational Research, 143(3), 463-497. 

Chan, F. T., Kumar, N., Tiwari, M. K., Lau, H. C. W., & Choy, K. L. (2008). Global supplier 

selection: a fuzzy-AHP approach. International Journal of Production Research, 46(14), 

3825-3857.  

Chang, K. C., & Yeh, M. F. (2005). Grey relational analysis based approach for data 

clustering. IEE Proceedings-Vision, Image and Signal Processing, 152(2), 165-172.   

Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European 

journal of operational research, 95(3), 649-655. 

Chang, Y. H., & Yeh, C. H. (2002). A survey analysis of service quality for domestic 

airlines. European Journal of Operational Research, 139(1), 166-177.  

Chang, Y. H., Yeh, C. H., & Wang, S. Y. (2007). A survey and optimization-based evaluation 

of development strategies for the air cargo industry.International Journal of Production 

Economics, 106(2), 550-562.  

Chatterjee, P., & Chakraborty, S. (2013). Nontraditional machining processes selection using 

evaluation of mixed data method. The International Journal of Advanced Manufacturing 

Technology, 68(5-8), 1613-1626. 

Choudhury, T., Das, P. P., Roy, M. K., Shivakoti, I., Ray, A., & Pradhan, B. B. (2013, 

December). Selection of non-traditional machining process: A distance based approach. 

In Industrial Engineering and Engineering Management (IEEM), 2013 IEEE International 

Conference on (pp. 852-856). 

Chuang, P.T. (2001). Combining the analytic hierarchy process and quality function 

deployment for a location decision from a requirement perspective. The International 

Journal of Advanced Manufacturing Technology, 18(11), 842-849. 

Cogun, C. (1993). Computer-aided system for selection of nontraditional machining 

operations. Computers in industry, 22(2), 169-179. 

Cogun, C. (1994). Computer-aided preliminary selection of nontraditional machining 

processes. International Journal of Machine Tools and Manufacture, 34(3), 315-326. 



 

93 

Cohen, L. (1995). Quality function deployment. Reading, MA: Addison-Wesley. 

Dağdeviren, M., & Yüksel, İ. (2008). Developing a fuzzy analytic hierarchy process (AHP) 

model for behavior-based safety management. Information Sciences, 178(6), 1717-1733. 

Das, S., & Chakraborty, S. (2011). Selection of non-traditional machining processes using 

analytic network process. Journal of Manufacturing Systems, 30(1), 41-53. 

Das, P. (2010). Selection of business strategies for quality improvement using fuzzy analytical 

hierarchy process. International Journal for Quality Research, 4(4), 283-289. 

Dubois, D., & Prade, H. (1980). Fuzzy sets and systems: Theory and applications. New York, 

NY: Academic Press. 

El-Hawary, M. E. (1998). Electric power applications of fuzzy systems. Wiley-IEEE Press. 

Govers, C. P. (2001). QFD not just a tool but a way of quality management. International 

Journal of Production Economics, 69(2), 151-159. 

Hauser, J. R., & Clausing, D. (1988). The house of quality. The Harvard Business Review, 

66(3), 63-73. 

Hsu, Y. T., Yeh, J., & Chang, H. (2000). Grey relational analysis for image compression. The 

Journal of Grey System, 12(2), 131-138. 

Julong, D. (1989). Introduction to grey system theory. The Journal of grey system, 1(1), 1-24. 

Kahraman, C., Ruan, D., & Doǧan, I. (2003). Fuzzy group decision-making for facility location 

selection. Information Sciences, 157, 135-153. 

Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic (Vol. 4). New Jersey: Prentice Hall. 

Kulak, O., & Kahraman, C. (2005). Fuzzy multi-attribute selection among transportation 

companies using axiomatic design and analytic hierarchy process. Information 

Sciences, 170(2), 191-210.  

Madic, M., Petkovic, D., & Radovanovic, M. (2015). Selection of non-conventional machining 

processes using the OCRA method. Serbian Journal of Management, 10(1), 61-73. 

Özdağoğlu, A., & Özdağoğlu, G. (2007). Comparison of AHP and fuzzy AHP for the multi-

criteria decision making processes with linguistic evaluations. İstanbul Ticaret Üniversitesi 

Fen Bilimleri Dergisi, 6(11), 65-85. 

Prasad, K., & Chakraborty, S. (2014). A decision-making model for non-traditional machining 

processes selection. Decision Science Letters, 3(4), 467-478. 

Roy, M. K., Ray, A., & Pradhan, B. B. (2014). Non-traditional machining process selection 

using integrated fuzzy AHP and QFD techniques: a customer perspective. Production & 

Manufacturing Research, 2(1), 530-549. 

Saaty, T. L. (1980). The analytic hierarchy process: planning, priority setting, resource 

allocation. McGrawHill. 

Soota, T. (2014). Integrated Approach To Multi-Criteria Decision Making For Sustainable 

Product Development. International Journal for Quality Research, 8(4). 

Temuçin, T., Tozan, H., Vayvay, Ö., Harničárová, M., & Valíček, J. (2014). A fuzzy based 

decision model for nontraditional machining process selection. The International Journal of 

Advanced Manufacturing Technology, 70(9-12), 2275-2282. 

Tong, L. I., & Wang, C. H. (2000). Optimizing multi-response problems in a dynamic system 

by grey relational grade analysis. Journal of the Chinese Institute of Industrial 

Engineers, 17(2), 147-156.  

https://doaj.org/toc/1800-6450


 

94                                          M. K. Roy, A. Ray, B. B. Pradhan 

Wang, T., Shaw, C., & Chen, Y. (2000). Machine selection in flexible manufacturing cell: a 

fuzzy multiple attribute decision-making approach. International Journal of Production 

Research, 38(9), 2079-2097. 

Wasserman, G. S. (1993). On how to prioritize design requirements during the QFD planning 

process. IIE transactions, 25(3), 59-65. 

Yeh, M. F., & Lu, H. C. (2000). Evaluating weapon systems based on grey relational analysis 

and fuzzy arithmetic operations. Journal of the Chinese Institute of Engineers, 23(2), 211-

221. 

Yurdakul, M., & Cçogun, C. (2003). Development of a multi-attribute selection procedure for 

non-traditional machining processes. Proceedings of the Institution of Mechanical 

Engineers, Part B: Journal of Engineering Manufacture, 217(7), 993-1009. 

Zadeh, L.A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.  

Zhu, K. J., Jing, Y., & Chang, D. Y. (1999). A discussion on extent analysis method and 

applications of fuzzy AHP. European journal of operational research, 116(2), 450-456.  

Zimmermann, H. J. (1996). Fuzzy set theory and its applications (1st ed.). Boston: Kluwer 

Academic Publishers. 

 

Manish Kumar Roy 
Sikkim Manipal Institute of 

Technology, 

Majhitar 

East-Sikkim-737132 

India 

replymanish@rediffmail.co

m 

Amitava Ray 
Jalpaiguri Government 

Engineering College, 

Jalpaiguri 

West Bengal - 735102 

India 

amitavaray.siliguri@gmail.c

om 

B.B. Pradhan 
Sikkim Manipal Institute of 

Technology, 

Majhitar 

East-Sikkim-737132 

India 

bbpradhan1@rediffmail.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:replymanish@rediffmail.com
mailto:replymanish@rediffmail.com
mailto:amitavaray.siliguri@gmail.com
mailto:amitavaray.siliguri@gmail.com
mailto:bbpradhan1@rediffmail.com

