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PROCESS CAPABILITY ESTIMATION FOR 
NON-NORMALLY DISTRIBUTED DATA 

USING ROBUST METHODS - A 
COMPARATIVE STUDY 

 
Abstract: Process capability indices are very important 
process quality assessment tools in automotive industries. The 
common process capability indices (PCIs) Cp, Cpk, Cpm are 
widely used in practice. The use of these PCIs based on the 
assumption that process is in control and its output is normally 
distributed. In practice, normality is not always fulfilled. 
Indices developed based on normality assumption are very 
sensitive to non- normal processes. When distribution of a 
product quality characteristic is non-normal, Cp and Cpk 
indices calculated using conventional methods often lead to 
erroneous interpretation of process capability. In the 
literature, various methods have been proposed for surrogate 
process capability indices under non normality but few 
literature sources offer their comprehensive evaluation and 
comparison of their ability to capture true capability in non-
normal situation. In this paper, five methods have been 
reviewed and capability evaluation is carried out for the data 
pertaining to resistivity of silicon wafer. The final results 
revealed that the Burr based percentile method is better than 
Clements method. Modelling of non-normal data  and Box-Cox  
transformation method using statistical software (Minitab 14)  
provides reasonably good result  as they are very promising  
methods for non –normal and moderately skewed  data 
(Skewness ≤ 1.5). 

Keywords: Process capability indices, Non - normal process, 
Clements method, Box - Cox transformation, Burr 
distribution, probability plots 

 
 
1. Introduction1 

 
Process mean µ, Process standard deviation 
σ and product specifications are basic 
information used to evaluate process 
capability indices however, product 
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specifications are different in different 
products (Pearn et al., 1995). A frontline 
manager of a process cannot evaluate 
process performance using µ and σ only. For 
this reason Dr. Juran combined process 
parameters with product specifications and 
introduces the concept of process capability 
indices (PCI).Since then ,the most common 
indices being applied by manufacturing 
industry are process capability index Cp and 
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